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Voorwoord

Ik herinner me nog heel goed de blik van de persoon die mij inschreef voor
de opleiding industrieel ingenieurswetenschappen wanneer deze zag dat ik
omschakelde van de faculteit rechtsgeleerdheid: "Ofwel is hij weg na een jaar,
ofwel gaat hij negen jaar doen over zijn opleiding.". Uiteindelijk bleek dat
tweede deel correct te zijn, maar niemand had zien aankomen dat dit zou komen
door een doctoraat. De afgelopen vier jaar mocht ik onderzoek doen aan het
e-Media Research Lab, een collectief onderzoekers dat zich inzet voor ingenieuze
oplossingen te bedenken voor problemen in de gezondheidszorg, onderwijs, kunst
en entertainment. Mijn onderzoek in dit lab is deel van het Dr. Solitaire project,
een samenwerking tussen de faculteit industriele ingenieurswetenschappen en
de faculteit geneeskunde waar onderzocht wordt of kaartspelen kunnen gebruikt
worden om verschillen in cognitieve performantie te detecteren. Dit doctoraat
stond mij toe om te groeien op zowel persoonlijk als technisch vlak, met enkele
personen in een sleutelrol.

Eerst en vooral wil ik mijn promotoren bedanken, Vero Vanden Abeele, Jos
Tournoy, en Katrien Verbert. Vero, ik wist niet wat voor een avontuur startte
voor mij toen jij me, in overleg met Luc Geurts en Stef Desmet, op 4 mei
2016 liet weten dat ik geselecteerd was voor het impulsdossier. Doorheen mijn
hele doctoraat wist ik dat ik altijd bij jou terecht kon voor raad en inzichten.
Bovendien wist je perfect waar je mijn grenzen kon verleggen en waar je mij
moest ondersteunen. Ik ben uitermate dankbaar voor het vertrouwen dat je
me die dag en gedurende de rest van mijn doctoraat gaf, iets wat ik nooit zal
vergeten. Jos, multidisciplinaire projecten zijn maar zo goed als de ondersteuning
van beide disciplines. Dank u om mij onder te dompelen in de wereld van de
geriatrie. De dagen dat ik mocht observeren en rekruteren in het UZ Leuven
hebben mij meer bijgebracht dan je voor mogelijk houdt. Daarboven stond
je altijd klaar om af te spreken om mijn focus en deadlines terug scherp te
stellen. Katrien, je hebt me geholpen om het enigma machine learning beter
te begrijpen. Hartelijk bedankt voor de meetings met opbouwende kritiek en
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suggesties, ze hebben dit doctoraat een niveau hoger getild.

Daarnaast wil ik ook graag mijn examencomissie bedanken. Bedankt Peter
Willems, om als vertegenwoordiger uit de industrie mee te stappen in dit verhaal.
Jouw inzichten werden geapprecieerd. Bedankt Jan Aerts, een expert in data
analytics aan boord hebben heeft me altijd twee keer doen nadenken bij elke
grafiek en tekening in dit doctoraat. Bedankt om assessor te zijn en voor de
feedback. Ook bedankt aan Max Birk en Maarten De Vos om me te begeleiden
bij de laatste stappen van mijn traject.

Een doctoraat kan je niet alleen doen. Onderweg kwam ik mensen tegen die
geloofden in dit project en, vaak na hun uren, mij ondersteunden. Bedankt
Marie-Elena Vanden Abeele, de tweede dr. Vanden Abeele die mijn doctoraat
hard vooruit heeft geholpen. Zonder de steun van u, dokters Delva, Lutin, en
Wynants en heel de afdeling geriatrie van het Jessa ziekenhuis, had ik nooit
genoeg participanten kunnen rekruteren. Je zet je elke dag 100% in voor jouw
patiënten, dat je daarnaast je nogmaals 100% inzette voor mijn studie zal mij
altijd bijblijven. Bedankt Lies Van Assche, Kathleen Roten, Kelly Pauwels en
Hanne Heymans, de psychologen die mij kennis lieten maken met de wereld van
de psychodiagnostiek, een discipline die ik nooit gedacht had van zo dichtbij te
leren kennen. Bedankt Paul Dierick en Suzy Delarbre, om mij het vertrouwen
te geven toen ik kwam spreken voor de COTESS werkgroep met de vraag om
samen te werken. Ik hoop dat het Neuropsychology 2.0 project nog een staartje
krijgt, dat verdient het.

Gedurende het gehele traject had ik het geluk om terug te kunnen vallen
op de steun van mijn familie en mijn vriendenkring. Ik kan niet hard
genoeg benadrukken hoeveel ik heb gehad aan mijn ouders, Benny en Fabie.
Jullie hebben altijd mijn zorgen uit handen genomen zodat ik mij volop kon
concentreren op mijn academische carrière. Ik hoop dat ik ooit een fractie kan
worden van de ouders die jullie voor mij zijn. Make, je bent er altijd voor mij
geweest. Jammer genoeg was mijn laatste onderwijsinstelling iets te ver gelegen
om na de les binnen te springen, maar je zorgde er steeds voor dat ik niets tekort
kwam. Pake, Bomma en Bompa, jullie hebben me jammer genoeg niet kunnen
zien afstuderen. Maar ik ben er rotsvast van overtuigd dat jullie uitermate
fier zouden zijn. Aan de families Gielis en Beckers, bedankt voor achter mij
te staan en voor (on)vrijwillige proefkonijnen te zijn. Aan mijn vrienden van
Deurne, Diest, Leuven en daar voorbij, bedankt voor de vele avonturen die
we tot nu toe al hebben beleefd. Dat ik na zoveel jaren nog altijd zo’n hechte
vriendenschappen heb, zegt meer over jullie dan over mij. Speciale dank gaat uit
naar Laura Bortels, Thomas De Groote, Laura De Herdt, Jelle Derbaix, Kobe
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Houtmeyers, Berto Pals, Simon Renty en Dries Reynders om dit manuscript na
te lezen en mij te behoeden voor gênante spelfouten.

Vrienden maak je niet enkel in je vrije tijd, maar blijkbaar ook op je werk.
Jonas, we hebben samen een conferentie bezocht in China en les gegeven in
Ethiopië, maar het meest van al koester ik de mopjes en discussies die we hadden
tijdens de gewone werkdagen. Ine, jij was de eerste persoon die ik ontmoette
toen ik startte en ik weet nog goed hoe warm je mij toen ontvangen hebt. Met
jou samenwerken was altijd een plezier, ik ga onze design kritieken missen.
Hannelore, bedankt voor de talloze keren dat je me hebt laten lachen. Jouw
oprechtheid en eerlijkheid sieren je. Robin, bedankt voor jouw gedetailleerde
feedback en advies. Je bent een top post-doc. What started as a little research
group quickly expanded to a full-fledged research powerhouse. Alemitu, Aqeel,
Benjamin, Melkamu, Esmael, Milica, Chetanya, Katta, Duowei, Kymeng, Bert,
Dimitri, Jorgen, Ahmed, Yiyuan, . . . I thank you all greatly for the fun we had.
Ook zou ik graag alle professoren en medewerkers willen bedanken waarmee ik
heb mogen samenwerken.

Ten slotte Eline, ik ben blij dat je nog steeds naast mij staat. Elk doctoraat
gaat gepaard met hoogtes en laagtes, altijd stond je klaar om samen te vieren of
mij op te beuren. Terwijl ik dit hoofdstuk van mijn leven afsluit, staan we aan
het begin van een nieuw. Ik kijk er naar uit om samen een huis op te knappen
die we dan samen thuis kunnen noemen.
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“Remember that all models are wrong; the
practical question is how wrong do they
have to be to not be useful.” - George Box



Abstract

Cognitive decline is the deterioration of one or more cognitive functions such
as attention, memory, or processing speed. Inherent to aging, most people will
encounter some form of cognitive decline during their lifetime while retaining
the ability to perform instrumental activities of daily living. However, beyond
this age-related cognitive decline due to aging, some people will experience
pathological cognitive decline: an abnormal rate of cognitive impairment due to
neurological diseases such as dementia or due to physical trauma. In contrast
to age-related cognitive decline, this pathological cognitive decline hinders
activities of daily living. In between the stages of age-related and pathological
cognitive decline, is the stage of Mild Cognitive Impairment (MCI), which
is characterized by a slight yet noticeable decline in cognition. Nevertheless,
instrumental activities of daily living remain mostly intact in this stage. While
the diagnosis of MCI is not always followed by a diagnosis of dementia, people
diagnosed with MCI have a markedly higher chance of progressing to dementia.
As such, early case-finding of MCI and timely adjusting the diagnosis is crucial
to ensure apt medical support. To aid this cause and to better understand the
dwindling of cognition, this dissertation sets out to explore the possibilities of
using digital card games to assess differences in cognitive performance due to
cognitive aging and MCI.

In particular, the use of digital biomarkers, i.e., user-generated physiological and
behavioral data collected through digital devices, is investigated. Embedded
into day-to-day interactions, these digital biomarkers can be used to support
diagnosis without interfering with the person’s daily routine. In addition, as
they are high-resolution in nature, they allow for making informed inferences of
neuropsychological processes previously unavailable to psychologists.

In this doctoral dissertation, two different aspects of cognitive decline are
measured using different digital card games. First, digital biomarker caused
by cognitive aging are assessed using the card game FreeCell. To this end, a
generic image processing toolkit was built to extract digital biomarkers from

v



vi ABSTRACT

the Microsoft Solitaire Collection. Using this toolkit, data was captured from
three different age categories. Machine learning models trained on this data
showed promise in classifying the younger and older age categories but lacked
in classifying games played by the middle-aged category.

Second, digital biomarker differences caused by MCI are assessed using the card
game Klondike Solitaire. For this part, an Android application was custom-built
to capture digital biomarkers while leaving gameplay untouched. Candidate
digital biomarkers were identified in collaboration with 11 experts in cognitive
decline. Next, gameplay data was captured from both healthy older adults and
older adults diagnosed with MCI. A generalized linear mixed model analysis
was conducted to investigate differences between healthy older adults and older
adults living with MCI. The results of this analysis suggest it is possible to
discriminate healthy participants from participants diagnosed with MCI at a
group level. In addition, machine learning models were trained to discern games
played by older adults with MCI. These models show promise on an individual
level and are successful in discerning healthy older adults from adults living with
MCI. While exploratory in nature, the results indicate similar psychometric
properties as commonly used screening tests.

In sum, these findings suggest that commercial off-the-shelf card games, not
built for the purpose of measuring cognition, can be used to capture digital
biomarkers of cognitive performance sensitive to the cognitive decline due to
aging and MCI.



Beknopte samenvatting

Cognitieve achteruitgang is de achteruitgang van één of meer cognitieve
functies zoals aandacht, geheugen of verwerkingssnelheid. Inherent aan ouder
worden, zullen de meeste mensen tijdens hun leven te maken krijgen met
enige vorm van cognitieve achteruitgang terwijl zij nog wel in staat zijn
instrumentele activiteiten van het dagelijks leven uit te voeren. Naast deze
normale cognitieve achteruitgang als gevolg van ouder worden, zullen sommige
mensen een pathologische cognitieve achteruitgang ervaren: een abnormale mate
van cognitieve achteruitgang als gevolg van neurologische aandoeningen zoals
dementie of fysiek trauma. In tegenstelling tot normale cognitieve achteruitgang,
belemmert deze pathologische cognitieve achteruitgang de activiteiten van het
dagelijks leven wel. Tussen de stadia van normale en pathologische cognitieve
achteruitgang bevindt zich het stadium van Mild Cognitive Impairment (MCI).
MCI wordt gekenmerkt door een lichte maar merkbare achteruitgang in cognitie.
Niettemin blijven de instrumentele activiteiten van het dagelijks leven in dit
stadium grotendeels intact. Hoewel MCI niet altijd evolueert tot dementie, is de
kans dat iemand met MCI dementie krijgt aanzienlijk groter. Het vroegtijdig
opsporen van MCI en het tijdig bijstellen van de diagnose is dan ook van
cruciaal belang. Om case-finding te ondersteunen en de achteruitgang van
cognitie beter te begrijpen, onderzoekt deze dissertatie de mogelijkheden van
digitale kaartspelen om verschillen in cognitie te evalueren die veroorzaakt zijn
door cognitieve veroudering en MCI.

In het bijzonder wordt het gebruik van digitale biomarkers onderzocht. Digitale
biomarkers omvatten fysiologische gegevens en gedragsgegevens die gegenereerd
worden door gebruikers en verzameld worden via digitale apparaten. Ingebed in
dagelijkse interacties met technologie kunnen deze digitale biomarkers gebruikt
worden om de diagnose te ondersteunen zonder de dagelijkse routine van de
persoon te verstoren. Bovendien maakt de hoge resolutie van deze data het
mogelijk om geïnformeerde conclusies te trekken over neuropsychologische
processen die voorheen niet beschikbaar waren voor psychologen.

vii



viii BEKNOPTE SAMENVATTING

In deze dissertatie worden twee verschillende aspecten van cognitieve achter-
uitgang gemeten met behulp van verschillende digitale kaartspelen. Ten eerste
worden verschillen in digitale biomarkers als gevolg van cognitieve veroudering
geëvalueerd met behulp van het kaartspel FreeCell. Hiertoe werd een generieke
beeldverwerkingstoolkit gebouwd om digitale biomarkers te extraheren uit de
Microsoft Solitaire Collectie. Met behulp van deze toolkit werd data verzameld
van drie verschillende leeftijdscategorieën. Machine learning modellen die op
deze data getraind werden, bleken veelbelovend in het classificeren van de jongere
en oudere leeftijdscategorieën, maar bleken matig te zijn in het classificeren van
spellen gespeeld door de middelste leeftijdscategorie.

Ten tweede worden verschillen in digitale biomarkers als gevolg van MCI
geëvalueerd met behulp van het kaartspel Klondike Solitaire. Voor dit onderdeel
werd een Android applicatie op maat gemaakt om digitale biomarkers te capteren
zonder het normale spelverloop te storen. Kandidaat digitale biomarkers werden
geïdentificeerd in samenwerking met 11 experten in cognitieve achteruitgang.
Vervolgens werd data verzameld van zowel gezonde ouderen als ouderen met
MCI. Een generalized linear mixed model analysis werd uitgevoerd om verschillen
tussen gezonde ouderen en ouderen met MCI te onderzoeken. De resultaten
van deze analyse suggereren dat het mogelijk is om op groepsniveau gezonde
deelnemers te onderscheiden van deelnemers met MCI. Daarnaast werden
machine learning modellen getraind om spellen te onderscheiden die gespeeld
werden door ouderen met MCI. Deze modellen zijn beloftevol op individueel
niveau en zijn succesvol in het onderscheiden van gezonde ouderen en ouderen
met MCI. Hoewel exploratief van aard, wijzen de resultaten op vergelijkbare
psychometrische eigenschappen als veelgebruikte screeningtests.

Kortom, deze bevindingen suggereren dat commerciële kaartspelen, die niet
gemaakt zijn om cognitie te meten, gebruikt kunnen worden om digitale
biomarkers te capteren die gevoelig zijn voor de cognitieve achteruitgang als
gevolg van veroudering en MCI.
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Chapter 1

Introduction

In an ever-aging society, cognitive decline is becoming an increasing point of
concern [1]. Cognitive decline can be described as the impairment of one or
more cognitive functions such as attention, executive function, or memory [2].
This phenomenon can be divided into two categories: age-related cognitive
decline caused by natural processes like aging, and pathological cognitive decline
caused by diseases such as Alzheimer’s Disease or physical trauma [2]. Most
people will encounter some form of cognitive decline in their life due to aging,
as indicated by the green trajectories visualized in Figure 1.1. However, some
people progress to Mild Cognitive Impairment (MCI) (indicated by the blue
line), a condition where one or more cognitive domains are significantly impaired
[3]. MCI differs from dementia (indicated by the red line), as in the stage of
MCI instrumental activities of daily living (IADL), such as managing finances,
preparing meals, or shopping, remain essentially intact. While some older adults
living with MCI remain stable or even progress to normal levels of cognition,
they have a markedly higher chance of progressing to forms of dementia [4].

While cognitive decline is not a direct a cause of death, symptoms caused by
advanced cognitive decline such as lapses in judgement, loss of self-awareness, or
even partial loss of the ability to speak or swallow, may decrease the patient’s life
expectancy [5]. To date, no treatment exists in current-day medicine to repair
neuronal damage once transpired [6]–[8]. Despite this absence of treatment,
early case-finding and regular follow-up of cognitive decline is imperative to
support patients and their family [9] by timely diagnosing disease progression,
starting (non-) pharmacological treatment to mitigate symptoms, or slowing
down disease progression [7], [8], [10], [11].

2
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Figure 1.1: Visualisation of cognitive trajectories throughout a human lifespan.

The consequences of dementia, financially and emotionally, are substantial.
Around 50 million people worldwide suffer from a form of dementia [12]. This
number is predicted to increase to 150 million by 2050, impacting friends,
caregivers, and families across the globe. Economically speaking, the cost of
dementia is set to grow to 2 trillion dollars by 2030. Spurred by an ever-aging
society that wants to maintain older adults’ independence and quality of life,
governmental organizations urge for further research on assessment of cognitive
aging, coining it the "grand societal challenge" [13], [14]. In addition, realizing
the current impact of dementia and its impending peril, policymakers and
(inter)national organizations have called for novel, scalable, and longitudinal
tools for improving case-finding and monitoring of dementia [12], [15]–[17].

To provide additional insights into cognitive decline, this dissertation sets out
to investigate the possibilities of assessing cognition by means of digital card
games. In particular, this dissertation aims to develop and explore game-based
digital biomarkers, user-generated and health-related traces collected through
connected digital devices [18], to assess differences in cognition due to cognitive
aging and MCI.
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1.1 Cognitive Decline

1.1.1 Age-related Cognitive Decline: Cognitive Aging

Cognitive aging is described by Blazer [13] as “the process of gradual, ongoing,
yet highly variable changes in cognitive functions that occur as people get older”
and envelops all changes in cognition throughout a person’s lifespan. While
cognitive aging equally comprises increases in certain cognitive functions, it is
in our society most often associated with the decline commonly noted amongst
older adults [19]. In the past decades, cognitive aging research has become more
important to understand why some older adults are less affected by age than
others and how decline could be mitigated.

During early descriptive research in 1955, Wechsler identified certain cognitive
functions that appeared to be more resilient to the effects of cognitive aging
than others [20]. This led to the theory of crystallized intelligence and fluid
intelligence as first described by Catell [21] in 1963. Fluid intelligence is
an umbrella term for all cognitive abilities related to extensive processing of
new information, amongst which processing speed, memory, and executive
functioning [22], [23]. Crystallized intelligence combines all cognitive abilities
linked to knowledge and habitual applications of established information amongst
which vocabulary and general knowledge [22], [23]. While crystallized cognitive
abilities seem to increase at a steady pace and diminish slightly around 70
years old, fluid cognitive abilities peak around 25 years and decline rapidly
afterward (indicated by the full and dotted line in figure 1.2). Even more than
50 years later, the theory of crystallized and fluid intelligence is still widely
accepted. Today, current research is focused on refining these categories by
further differentiating cognitive functions such as memory (e.g., implicit memory,
episodic memory, semantic memory, etc.) [20].

While figure 1.2 accurately depicts the cognitive status of the general population
throughout its lifespan, a vast heterogeneity is observed when observing
individual cognitive trajectories [22]. Figure 1.3 depicts cross-sectional age trends
(N=5315) for fluid reasoning and crystallized knowledge from the Woodcock-
Johnson Tests of Cognitive Abilities [25]1. Every person’s trajectory is highly
individual: the rate at which it increases and declines afterward, at which age
they peak, and how high the peak is. The idiosyncratic cognitive trajectory is
shaped by the person’s innate intelligence, educational opportunities, lifestyle
choices, and other internal and external factors [26], [27]. This heterogeneity

1While these cross-sectional studies may suffer from cohort differences, it can still be noted
that there are sizeable differences for fluid and crystallized intelligence in the same cohort.
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Figure 1.2: Crystallized and fluid intelligence across the lifespan of the average
human, adapted from [24].

Figure 1.3: Cross-sectional age trends for fluid reasoning (a) and crystallized
knowledge (b). The average and standard deviation have been rescaled to
respectively 100 and 15 units for the ages between 18 and 25. Permission for
reprint granted from [22].
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complicates accurately distinguishing normal cognitive aging from abnormal
pathological cognitive decline [22], [28].

1.1.2 Pathological Cognitive Decline: Dementia and Mild
Cognitive Impairment

Pathological cognitive decline is, unlike cognitive aging, not a natural lifelong
process but rather the result of disease or trauma. The umbrella term for
these conditions that cause symptomatic deficits in cognitive domains is called
dementia [29]. Dementia spans over progressive diseases such as Alzheimer’s
Disease [30] or Lewy-Body dementia [31] and nonprogressive diseases such as
Creutzfeld-Jakob [32] or head trauma [29].

Symptoms of dementia are dependant on the type of dementia and the region
of the brain where alterations manifest. Amongst others, these symptoms
can include loss of short and/or long-term memory, attention span problems,
changes in personality, difficulty with language, and more. Consequentially,
these alterations in the brain caused by dementia can severely impair mood,
behavior, relationships, and hamper essential activities of daily living. Other
diseases can mimic symptoms of dementia, such as depression (also known as
pseudodementia), thyroid problems, or vitamin deficiencies. However, these
symptoms can be reversed by treating the underlying problem. While the
neuronal damage of dementia is irreversible with the state of modern medicine,
proactive interventions of adjustable risk factors can delay the onset or impede
the progression of dementia [12].

However, prodromes of dementia can be detected earlier in the state of Mild
Cognitive Impairment [3]. Both MCI and dementia are characterized by a
significant impairment in one or more cognitive functions which cannot be
attributed to age or other causes. However, they differ in the extent to
which activities of daily living (IADL) are preserved. Whereas these IADL are
preserved or minimally impaired with MCI, they are severally impaired with
dementia. Depending on whether memory is impaired, persons with MCI are
categorized as living with amnestic or non-amnestic MCI (figure 1.4). These
two categories of MCI can be further specified as either single-domain or multi-
domain, depending on the amount of cognitive functions that are impaired
[33]. A diagnosis of MCI does not always lead to a diagnosis of dementia;
some persons remain in the state of MCI and others even recover to normal
cognitive levels. However, research has shown that this group has a higher
chance of progressing to dementia [4]. Therefore, early case-finding of MCI can
assist in timely detecting underlying causes, and allows for taking measures
slowing down disease progression [10], such as providing (non-)therapeutical
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Figure 1.4: Criteria of Mild Cognitive Impairment as described by [33] based
on the Key Symposium criteria posed in 2003 [40].

regimens to delay symptoms [7], [8], [10], and providing support for the patient
[11]. Despite these benefits of early case-finding, cognitive performance is not
regularly monitored amongst community dwellers, care home residents, and
hospitalized patients. This can lead to a later diagnosis [5]. Studies point at a
general late or underdiagnosis of cognitive impairment amongst older adults
[34]–[36].

Recent research pursues further delineation of early stages of cognitive decline.
Subjective cognitive decline (SCD) was construed in 2014 to define individuals
who have a persistent self-experience of cognitive decline, yet show no objective
cognitive impairment in cognitive tests [37]. This construct might prove useful
to identify those vulnerable to dementia before pathological decline can be
detected. First results support SCD as a late preclinical stage of dementia, with
reduced brain volumes and steeper cognitive performance decline being noted
by comparing healthy older adults without SCD and SCD [38], [39]. However,
the construct of SCD is still being refined and the majority of people with SCD
will not progress to pathological forms of cognitive decline. In addition, there is
no universally accepted practice to discriminate SCD with MCI and a diagnostic
overlap might exist among clinicians [37]. Therefore, for the remainder of this
dissertation, the focal point of pathological cognitive decline will be on MCI as
it is more mature as a clinical construct.
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1.1.3 Detection of Cognitive Decline

Typically, assessment of cognitive decline is initiated by a routine screening
at the general practitioner or a cognitive complaint from the patient or their
family. The first step in this process is usually to conduct a short cognitive
screening test such as the Montreal Cognitive Assessment (MoCA) [41] or
Mini-Mental State Examination (MMSE) [42]. When these results indicate
a possible cognitive impairment, a complete neuropsychological assessment is
conducted as follow-up. These neuropsychological assessments take between 90
minutes to 3 hours and equally assess the patient’s history and other potential
cognition impairing factors such as language fluency problems or depression
[43]. To complement these tests, biomarker analysis (e.g., FDG-PET scans) can
be conducted to detect neuronal damage. Recently, special interest in cognitive
decline research has gone to biomarker scans. Biomarkers can be defined as
"any substance, structure, or process that can be measured in the body or its
products and influence or predict the incidence of outcome or disease"[44]. As
such, they are used to influence diagnosis and can assess the risk of disease
progression [44]. For MCI due to AD, four cerebrospinal fluid biomarkers are of
main interest: Aβ40, Aβ42, total τ , and phosphorylated τ [45]. An elevated
presence of these biomarkers can strengthen the diagnosis of MCI and can
give information on the predicted risk of progression to Alzheimer’s Disease.
Together, this neurological examination leads to the potential diagnosis of MCI.

While our understanding of the intricacies of cognitive decline has come a long
way, research pinpoints opportunities for improving modern cognitive assessment.
While some physicians tend to solely rely on screening tests for diagnosis, these
screening tests may lack in sensitivity or are unable to pinpoint which cognitive
functions are impaired [43]. And while thorough neuropsychological assessment
remains a golden standard, they require a trained administrator which makes the
process vulnerable to interassessor variability and sensitive to white-coat effect
[46], [47]. In addition, the mode of administration of the majority of these tests
(i.e., pen, paper, and a stopwatch) requires the full attention of the administrator
over a lengthy period of time which makes the process prone to errors and limits
the number of data points extracted. What requires an extensive cognitive
effort from the patient is often reduced to the number of mistakes made and
the total time it took to complete said test [48]. Use of biomarkers at the
other hand, is invasive and inconvenient for the patient [46], [49]. This whole
process is obtrusive for the patient, requiring them to break daily routines and
forcing travel for a fragile population [49]. Research on the patient’s perspective
reveals somber results, with patients describing neuropsychological assessment
as bewildering and humiliating [50], [51]. This highly stressful evaluation can
make patients self-aware of their condition, leading to feelings of helplessness
and distress, which aggravates results and impacts already fragile mental health



DIGITAL BIOMARKERS 9

[52], [53].

While these disadvantages suggest room for improvement when looking at
cognitive assessment as single-point-in-time measurements, deficiencies become
more apparent in frequent longitudinal measurements. As pointed out by Piau
et al. [46], one of the biggest vulnerabilities in current neuropsychological
assessment is that it is performed at discrete points in time at large intervals.
Known as the "snapshot problem", this episodic aspect makes measurements
vulnerable to temporary lapses in cognition caused by medication, motivation, or
even tiredness [48], [49], [54], [55]. In addition, due to the static nature of these
pen-and-paper tests, they are susceptible to learning effects, rendering repeated
measurements over a short period of time ineffective. Measuring biomarkers
are equally unfit for repeated measures as they are costly to conduct and strain
limited resources and personnel [48]. Being aware of these challenges, researchers
and policymakers promote the development of additional cost-effective and
high data resolution tools that support longitudinal cognitive monitoring [3],
[48], [56]–[59] which reduce patient-level barriers and are understanding of the
patient’s experience [52].

1.2 Digital Biomarkers

Cognitive information in the form of digital biomarkers of cognitive performance
show promise as complementary tools to the current neuropsychological
assessments. Digital biomarkers are defined as "user-generated physiological
and behavioral measures collected through connected digital devices to explain,
influence and/or predict health-related outcomes" [18]. Sharing the same
clinical goals as their biological counterparts, digital biomarkers can be used to
support, predict, or influence diagnosis [55]. Embedded in passive and active
interactions with wearables, smartphones, or other connected digital devices,
digital biomarkers have the potential to unobtrusively capture data related
to physical, social, and cognitive health [18]. While clinical encounters offer
elaborate information on diseases and their progression, they are often limited
in time thus making the data sparse [60], [61]. By providing more continuous
measurements of objective health-related information, digital biomarkers can
assist in understanding the progress and detect variability of symptoms [60].
In addition, the use of sensors does not require transforming signals to ordinal
ranked tasks (e.g., for Parkinson’s Disease, the continuous signal of movement is
transformed to a numerical quantity of finger taps) [61]. The newfound interest
in digital biomarkers reflects in the number of studies published. In the past
decade, studies on digital biomarkers indexed in PubMed have increased by
325% [62]. Currently, the use of digital biomarkers has pervaded in a multitude
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of domains including, but not limited to, modelling of tremor for movement-
related disorders [63], using mammograms to predict breast cancer risk [64],
modeling gait changes and sleep disturbances to monitor Alzheimer’s Disease
[65], [66], detecting arrhythmia [67], using voice analysis to detect signs of
depression [68], but also cognitive assessment [46], [49], [69].

The characteristics of digital biomarkers make them suitable to address the
challenges caused by traditional cognitive assessment. They are less invasive for
the patient, as they are captured from day-to-day interactions with technology
[55]. Due to the availability of digital devices in the western world, they are
cheaper to acquire, not demanding specialized equipment or trained personnel
to administer [18], [55]. In addition, these digital devices allow for more
data points to be captured as opposed to manually registering information,
leading to a higher granularity and resolution of data. This combination of an
increased number of measurements and the higher resolution of data captured
during these measurements opens up possibilities for more informed inferences
of neuropsychological processes [48]. Intra-individual variability for example,
an early indicator of cognitive decline, can be detected [46], [70]–[73]. In
addition, the effects of medication can be assessed or events which might impact
cognition (e.g., a physical or psychological trauma) can be detected. Finally,
these more frequent measurements can be used to create individual cognitive
baselines, allowing the patient to be compared with themselves as opposed to
norm-referenced data [48].

For Mild Cognitive Impairment, the technologies from which digital biomarkers
are captured can be grouped into four distinct categories [46]. First, digital
biomarkers can be derived from dedicated embedded or passive sensors. These
sensors range from infrared sensors installed in the home to detect movements
[74] to passive sensors devices installed in the patient’s vehicle [75]. The second
category comprises digital biomarkers captured through dedicated wearables.
This category uses, amongst others, GPS data from mobile phones [76] and
rotation data from inertial sensors [77]. Third, non-dedicated technological
solutions can yield digital biomarkers as well. Examples of technology used
in this category are mouse pointer movement data [78] and keyboard loggers
installed on computers [73]. Finally, digital biomarkers can be captured through
dedicated or purposive technologies. This category contains technologies in the
form of e.g., personal digital assistants [79], but also games [80].

Sensor-based technologies are the most mature digital biomarker technology
category. However, they show several barriers which hamper adoption [46]. The
effort and complexity of installing the sensors makes them difficult to set up by
non-technical users. In addition, current-state detection algorithms still show
difficulties when differentiating activity between larger households. Dedicated
wearables show other complexities, with user acceptance being diminished by
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the lower technological skill of the users and little perceived use. While a less
mature technology than the other categories, the technologies which can be
unobtrusively embedded in day-to-day activities without complex installation
show more promise for widespread adoption.

1.3 Digital Games for Assessment of Cognitive
Performance

Digital games have stirred the interest of researchers in understanding,
measuring, and training cognition for a long time. Suits [81] defined games
as "the voluntary attempt to overcome unnecessary obstacles", which hints at
the autotelic nature, meaning games are played by the own volition of players.
The audiovisual and interactive environments allow for immersive experiences
that bring forth an intrinsic motivation to play. This was corroborated
by recent research reinforcing that games are more engaging than classical
neuropsychological tests [82]–[84]. Moreover, they do not require the presence
of a trained administrator, making them more resilient to white-coat effect and
administrator bias [48]. In addition to immersive and interactive environments,
games provide obstacles bounded by a fixed set of rules, which requires the
engagement of the player to overcome them [48]. These obstacles can differ
with every play session while keeping the core rules intact. This novelty of the
challenges keeps games engaging and also less vulnerable to learning effects [48].

While digital games were already popular amongst young and old, their
popularity is increasing rapidly in older populations. In 2019, the American
Association of Retired Persons (AARP) [85] conducted a survey of gameplay
behavior in North America. Their results show that the 50+ gaming population
in North America has grown to 50.6 million, with the average time playing being
5 hours per week. The silver-haired gamer is also a dedicated gamer, with 47%
of them gaming daily and 27% multiple days per week. Interestingly enough,
this daily gaming frequency increases with age, with 45% of older adults between
50 and 59 gaming daily and 50% of those ages 70 and up. Similar results can be
found in the Entertainment Software Association’s (ESA) video game industry
essential facts of 2020 [86]. Their results indicate that 55% of gamers 65+ are
novel gamers, having played video games for ten years or less. This indicates
that more older adults are finding their way to digital entertainment. The most
favorite game genre in both studies includes casual card games (e.g., Solitaire),
a category also found to be popular in independent research by Chesham et al.
[87] and De Schutter et al. [88]. All three age groups (50-59, 60-59, and 70+)
in the AARP report indicate simply fun as their main reason to play [85].
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According to the AARP, there has also been a platform shift amongst older
adults since 2016, with mobile devices (73%) dethroning computers and laptops
(59%). When it comes to digital games for assessment of cognition, it may
be preferable to develop applications for large touch devices such as tablets,
as argued in a systematic review by Fereira-Brito et al. [89]. The intuitive
interface with direct manipulation [90] may contribute to adoption from less
familiar users and is more suitable for fragile populations [91], [92].

1.3.1 Serious Games for Assessment of Cognitive Perfor-
mance

The focal point of game research for assessing cognition has been on serious
games, which are “games that do not have entertainment, enjoyment, or fun
as their primary purpose” [93]. Instead, they are specifically developed with
a serious purpose in mind. One of the earliest examples is "Space Fortress"
[94], a "computer-controlled task with game-like qualities", developed in the
80’s under the leadership of the Cognitive Psychological laboratory of the
University of Illinois, which was extensively used to train cognition. Up to
today, this game-based tool is still used in research labs to unravel the intricacies
of cognitive control and to understand learning processes [95]. In the meantime,
games to train and measure cognitive performance have boomed, as indicated
by the systematic reviews of Ferreira-Brito et al. [89], Lumsden et al. [84], and
Valladares-Rodriguez et al. [83].

While these serious games are developed with the intention of capitalizing
on the benefits of digital games, as explicated above, pitfalls may prevent
them from doing so in reality. In particular, these serious games are at risk
of being "chocolate-covered broccoli"[95]–[97], in other words, well-controlled
environments to measure cognition with a thin veil of gameplay. In the end,
while technically games, they are not motivating players. As they are often
based on encapsulating existing neuropsychological tests, they are bound by
the rules of said test. Certain gameplay elements might be dropped because
they can interfere with measuring the psychological construct [48]. In addition,
these games are often developed by academic researchers as opposed to game
studios. This lack of expertise and lesser funding can impact the quality of the
game, providing lesser immersive and mechanically polished games [95], [98]. A
meta-analysis of serious learning games by Wouters et al. [99] corroborates these
critiques. The authors compared serious learning games with regular methods.
They showed that while serious games might be more effective and even improve
retention, they do not improve motivation. This lack of motivation has also
been noted in training cognition studies by Boot et al. [95] and Toril et al. [82].
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1.3.2 Commercial off-the-shelf Games for Assessment of
Cognitive Performance

Commercial off-the-shelf (COTS) games, often developed with the sole purpose
of fun in mind, may be a valid alternative to these serious games. As argued
by Mandryk and Birk [100], COTS games have the potential to provide digital
biomarkers. Using natural and unprompted interactions with these games,
information on behavior, cognitive performance, motor performance, social
behavior, and affect can be obtained. More specifically, research suggests using
casual COTS games for older adults susceptible to MCI as they have a broader
appeal, are more accessible, and require a lower cognitive load [87], [101]. Their
key advantage, next to the general advantages of digital biomarkers and games
described above, is the prospect of meaningful play.

Meaningful play is a concept put forward by Salen & Zimmerman [102] in 2003
and can be defined in two separate yet related ways [103]. The first definition
of meaningful play reflects how game actions lead to outcomes thus creating
meaning: "Meaningful play in a game emerges from the relationship between
player action and system outcome; it is the process by which a player takes
action within the designed system of a game and the system responds to the
action. The meaning of an action in a game resides in the relationship between
action and outcome.". This descriptive definition illustrates what happens in a
game, at a mechanistic level, hence it also highlights what may be captured as
raw material for digital biomarkers. The second definition of meaningful play
takes a wider viewpoint and defines moments of meaningful play: "Meaningful
play occurs when the relationships between actions and outcomes in a game are
both discernible and integrated into the larger context of the game. Creating
meaningful play is the goal of successful game design." The prime focus in this
evaluative definition underscores the importance of effectively communicating
the results of actions and integrating game outcomes in the grander scheme of
the game and the player’s life.

Specifically for (digital) meaningful play in elderly life, De Schutter, Vanden
Abeele, and colleagues [88], [104]–[108] have done extensive research. Their work
states that meaningful play for older adults is often derived from the perception
of ’fostering connectedness’, ’cultivating oneself and others’, and ’contribution
to society’ [88], [105], [109]. Their user studies paint a picture of gamers that
has a fondness for casual games, with social interaction and challenge being
the main predictors for investment in playing digital games [88], [105]. A
qualitative study (N=35) applying the Uses&Gratifications paradigm showed
five categories of older adults playing digital games: "time wasters", "freedom
fighters", "compensators", "value seekers" and "ludophiles" [110]. Later research
of De Schutter et al. [108] defines three interpretations of game enjoyment:
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telic enjoyment or the joy of improving mental and physical health; hedonic
enjoyment or the joy of experiencing positive emotions while playing; and
eudaimonic enjoyment or the joy of contributing to personal growth. In sum,
their research shows that play is enjoyed throughout one’s lifespan and that
digital games can be a source of meaningful play for older adults [107].

However, using a COTS game is not a silver bullet to solve all problems of serious
games. While COTS games are not bound to the demands of psychological
tests, they might introduce complexities that may interfere with accurately
measuring cognition [48]. For example, adapting difficulty to the player’s skill
or providing a hint functionality might complicate accurately measuring in-
game performance. In addition, these games might change over time, with
developers pushing updates, which might complicate comparing previous game
performance [98]. In addition, it can prove difficult to extract information from
COTS games as the source code and interaction logs are inaccessible to the
public2. Finally, researchers using either COTS games or serious games still
need to recognize that not everyone is an avid gamer. Moreover, those who do
enjoy gaming do not necessarily enjoy the genre and type of games promoted by
the researchers. Abandonment of the game, which could indicate an inability
to play due to cognitive impairment, could equally indicate loss of interest as
gaming preference might naturally change over time [100]. This complicates
the selection of games worth exploring for digital biomarkers [100].

Klondike Solitaire

A likely suitable choice for a COTS game to assess cognition through digital
biomarkers is Klondike Solitaire as it is one of the most popular card games
[111]. According to Parlett [112], it was founded in the 18th century when
fortune-telling cards rose in popularity. Three centuries later, it is still popular
amongst young and, especially, old. According to De Schutter and Vanden
Abeele, card games were amongst the most played activities amongst older
adults in their user group [105]. Similar results were noted by Allaire et al.,
where card games were found to be the most popular amongst digital games
[113]. More recently, Solitaire was observed as most popular amongst older
adult gamers by Boot et al. [114] during the PRISM randomized field trial. In
this year-long study on older adults and leisure, participants had access to a
computer where eleven games were installed, amongst which Sudoku, Solitaire,
and crossword puzzles. Boot et al. [114] noted that “There was a strong, clear

2There are notable exceptions, e.g., League of Legends, EVE online, or Guildwars 2 [100]
which are programmed to log game information of their users. However, even if data is readily
available for research, it is not logged with monitoring cognition in mind which complicates
the process of crafting insightful digital biomarkers.
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Figure 1.5: Klondike Solitaire as can be seen in the Microsoft Solitaire Collection.
The seven build stacks can be seen at the bottom whilst the suit stacks are at
the top right. The pile of undealt cards can be seen in the top left.

preference for Solitaire [. . . ]. After Solitaire, there was no clear second choice,
and on average participants infrequently played the other games.” Additionally,
their results showed that Solitaire was being played most consistently.

The rules of Klondike Solitaire are deceitfully simple [115]. In the traditional
variant, at the start of the game, 28 of 52 playing cards are divided amongst
seven build stacks, as can be seen in figure 1.5. The first build stack contains
one card, the second two cards, the third three, all up to the seventh build stack,
with each top card being dealt face-up. The remaining 24 cards are placed on
the pile. The goal of the game is to sort all cards per rank, starting with the
ace and ending with the king, in the four suit stacks. This can be achieved by
moving cards between build stacks. Cards can be moved to other build stacks
when they differ in color and are one value less (e.g., a black nine of clubs can
be placed on a red ten of hearts). As the game progresses, stacks can be cleared.
These spots can be solely used to store kings. When stuck, players can always
request cards from the pile. Here, cards can be drawn in threes and maintain
their first-in-last-out-order (i.e., only the last card drawn can be played).

The allure of Solitaire is surprising as it has one of the lowest success rates of
any card game variant [112]. Anecdotal evidence reports an average win rate
of 15% [115]. Combining Monte-Carlo methods, Hindsight Optimization, and
Sparse sampling, technical win rates up to 35% are noted by Bjarnason et al.
[115]. This low win-rate can be explained by the complexity of each initial deal,
with the face-down cards having 51 quintillion possible combinations.
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FreeCell

FreeCell is another highly popular Solitaire variant. In contrast to Klondike
Solitaire, all 52 cards of the deck are dealt at the start and are oriented in the
face-up direction, as can be seen in figure 1.6. The increased visible information
at the start makes FreeCell, always solveable. The FreeCell configuration
consists of three parts. At the bottom, there is the build stack, where all 52
cards are randomly distributed over eight stacks. The top left is called the
storage stack, consisting of four free places or FreeCells where the player can
temporarily store cards to open up moves. Finally, at the top right, the suit
stack can be found. When all cards are sorted per suit in ascending order on
these stacks (i.e., all hearts, clubs, diamonds, and spades starting with the ace
and ending with the king), the game is won.

To sort all cards on the suit stack, cards have to be moved according to the
following rules. Between build stacks, cards can be moved on top of each other
when they are of different colors and if the rank of the current top card is one
higher. According to the rules, only one card can be moved at the same time;
i.e., it is not allowed to move stacks of sorted cards at the same time. However,
multiple cards can be moved if there are enough FreeCells and free build stack
columns. Mathematically, the maximum number of cards that can be moved in
a single move can be calculated as follows:

moveablecards = (1 + freestoragespots) ∗ 2freecolumns

Figure 1.6: FreeCell as can be seen in the Microsoft Solitaire Collection. The 8
cascades can be found at the bottom, the four storage stacks or FreeCells at
the top left, and the foundation at the top right.
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1.4 Research Objective and Hypotheses

This doctoral dissertation aims to explore the possibilities of game-based digital
biomarkers to assess differences in cognitive performance due to cognitive aging
and MCI. To assist in resolving this overarching research objective, several
research questions have been formulated:

Objective: To assess cognitive performance in elderly life via
meaningful play.
RQ1. How can game data be captured from commercial off-the-shelf digital
card games?
RQ2. How can insights from game design and cognitive psychology be
combined to transform game data into potential digital biomarkers of cognitive
performance?
RQ3. To what extent can differences in cognition due to cognitive aging be
assessed using digital biomarkers of cognitive performance?
RQ4. To what extent can differences in cognition due to Mild Cognitive
Impairment be assessed using digital biomarkers of cognitive performance?

1.5 Methodology

A data science approach is required to address these research questions. Data
science can be defined as "the study of the generalizable extraction of knowledge
from data" [116]. Driven by the need to handle ever-increasing data flows from
today’s society, multiple models have been developed to standardize data science
processes [117]–[120].

A visualized representation of the six steps of the project can be found in 1.7 [119].
The first phase of this model is Domain Understanding which envelops getting
to know the perspective from the domain where the data science problem origins.
Using the domain knowledge extracted from this phase, the Data Understanding
phase can start. In this phase, data collection tools can be built and initial
data collection studies can start. This first dataset can be used for a first data
exploration, to get initial insights from the data, which can be used to solve
early issues with the current process, fine-tune hypotheses, or set up plans for
further data processing. The third phase, Data Preparation, entails every step
to create the dataset which will be used to train models like data collection and
transformation of data in informative indicators. The fourth phase, Modeling,
envelops training, optimizing, and reiterating models to extract insights. The
results of these models are then critically assessed in the Evaluation phase. The
whole process and derived insights are evaluated with respect to the objectives
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of the study, listing possible next steps. After possibly several iterations, this
will lead to the deployment phase. This phase is often not the end of the project
but can be seen as the organization of all knowledge gathered, written down in
a report or deployed in an automated process.

While the process followed in this dissertation adheres to the data science
model described above, there is no clear-cut division of each phase between
the chapters, with many of them describing several steps of the process. For
detecting cognitive aging through FreeCell, the Domain Understanding and
Data Understanding part can be mainly found in chapter 2 as it describes
the creation of a computer vision tool used to extract data from FreeCell and
the data exploration from the first data collection study. Chapter 3 comprises
the Data Preparation, Modeling, and Evaluation phases of detecting cognitive
aging, describing the steps undertaken to create the final dataset, the modeling
of machine learning algorithms to detect cognitive aging, and evaluation thereof.
For detecting MCI through Klondike Solitaire, chapter 4 describes the expert
consensus study used to gather expert’s opinions on the effect of MCI on
Klondike Solitaire gameplay. Furthermore, information on Data Understanding,
Data Preparation, Modeling, and Evaluation can be found in chapters 4 and 5,
which contain analyses of digital biomarkers on a group level using statistical
interference and on an individual level using machine learning. Finally, this
dissertation can be seen as the Deployment phase of this project, synthesizing
all results gathered.
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Figure 1.7: Visualisation of all steps taken in this project, adapted from [119].

1.6 Thesis Outline

As this thesis explores the assessment of differences in cognitive performance
due to aging and MCI, the remainder of this thesis is divided into three main
parts: Part II, which envelopes all research done to detect cognitive decline of
cognitive aging through FreeCell; Part III, which details all findings concerning
the detection of cognitive decline due to mild cognitive impairment through
Klondike Solitaire; and Part IV, which discusses all previous chapters and
synthesizes it in general conclusions, recommendations, and future work. A
schematic overview can be found in figure 1.8 and an introduction on how the
different chapters relate to each other can be found below.

The following two chapters belong to Part II and investigate the impact of
cognitive aging through FreeCell. The first step in assessing cognitive aging
through FreeCell is to develop tools to capture game data. As argued in section
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1.3, extracting information to craft digital biomarkers can prove difficult for
COTS games. To answer RQ1. How can game data be captured from commercial
off-the-shelf digital card games?, a novel method of capturing game metrics
without accessing the internal source code or interaction logs was developed.
Part II Chapter 2 describes the development process of a generic image
processing toolkit to extract digital biomarkers of cognitive performance from
existing casual card games. This toolkit, a collaboration with the Embedded
and Artificially intelligent Vision Engineering (EAVISE) research group of
KU Leuven, utilizes computer vision to automatically capture, annotate, and
process gameplay data from the popular Microsoft Solitaire Collection. Next
to detailing this method, results of a data exploration on the effects of aging
on FreeCell gameplay were analyzed. The source code of this tool was made
publicly available for other researchers to use and adapt.

With Part II Chapter 2 indicating that image processing is a viable way to
capture game data with a minimum of stress on the computer, the next chapter
builds on the lessons learned from the initial data exploration and expands the
analysis. As argued in section 1.1.1, understanding and mapping cognitive aging
can help in mitigating decline and might lead to earlier detection of pathological
decline. To answer RQ3. To what extent can differences in cognition due to
cognitive aging be assessed using digital biomarkers of cognitive performance?, a
larger number of participants were recruited to explore the viability of machine
learning. Part II Chapter 3 describes the machine learning process used to
detect age using digital biomarkers of cognitive performance captured from
FreeCell. A Logistic Regression model was trained to classify FreeCell games into
one of three age categories (18-25, 40-55, and 65+). Despite the highly variable
aspect of cognitive aging, performance metrics showed successful classification
of the 18-25 and 65+ categories. However, model performance for the middle
40-55 category showed to be problematic. In sum, the results of this chapter
support current theories on fluid and crystallized theory, provide benchmark
results for future researchers, and specify pitfalls and opportunities which may
inspire future research.

The next two chapters belong to Part III and investigate the impact of MCI
through Klondike Solitaire. As argued in section 1.1.2, timely detecting MCI
can help with timely changing (non-)therapeutical regimen and providing apt
support. Due to the limited related work on casual COTS card game-based
digital biomarkers, the collaboration between medical sciences and game research
is imperative to crafting digital biomarkers that are theoretically related to
cognitive performance. To answer RQ2. How can insights from game design and
cognitive psychology be combined to transform game data into potential digital
biomarkers of cognitive performance?, a methodological method was made to
facilitate collaboration and draw insights. Part III Chapter 4 contains the
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expert consensus study used to explore the relation between player actions
and cognitive functions in Klondike Solitaire. Agreement between experts was
calculated using an intraclass correlation with a two-way fully crossed design with
type consistency. A moderate to excellent reliability was achieved for all cognitive
functions, which provided insights into the intricacies of Klondike Solitaire
gameplay mechanics. Using these insights, digital biomarkers of cognitive
performance were defined, leading to the creation of an Android application that
can capture necessary information to craft said digital biomarkers. To assess the
efficacy of these digital biomarkers on a group level and to partially answer RQ4.
To what extent can differences in cognition due to Mild Cognitive Impairment be
assessed using digital biomarkers of cognitive performance?, digital biomarker
differences between older adults living with MCI and a healthy control group
were inspected on a group level using Generalized Linear Mixed Models. These
models, which took differences in age, tablet experience, and Klondike Solitaire
experience into account, showed sizeable and significant effects for 12 out of
23 digital biomarkers tested. Comparing the different categories of digital
biomarkers, results indicated biomarkers related to the timing of moves and the
outcome of the game to be promising.

In addition to drawing population inferences based on a sample, the dataset of
Part III Chapter 4 was equally explored on an individual level to see whether
individual cases of MCI can be detected through gameplay. To assess the efficacy
of these digital biomarkers on an individual level and to partially answer RQ4.
To what extent can differences in cognition due to Mild Cognitive Impairment be
assessed using digital biomarkers of cognitive performance?, a machine learning
analysis was conducted. Part III Chapter 5 describes the training of nineteen
machine learning models with different underlying algorithms to detect games
played by older adults with MCI. After training, the three best models were
used to predict previously unseen games to test the usability of the models.
Results showed F1 scores and AUC’s above 0.811 and 0.877 for each of the top-3
models, opening up new research opportunities for longitudinal measurements.
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Figure 1.8: Schematic overview of the thesis outline.



PUBLICATIONS 23

1.7 Publications

This dissertation is based on the following scientific publications. A full overview
of scientific contributions and outreach can be found in Appendix A.

Papers in Proceedings of International Conferences (blind
peer review)

Published K. Gielis, J. Kennes, C. D. Dobbeleer, S. Puttemans, and
V. V. Abeele, “Collecting Digital Biomarkers on Cognitive Health Through
Computer Vision and Gameplay: An Image Processing Toolkit for Card Games”,
in 2019 IEEE International Conference on Healthcare Informatics (ICHI), Xi’an,
China: IEEE, Jun. 2019, pp. 1–12, isbn: 978-1-5386-9138-0. doi: 10.1109/
ICHI.2019.8904511

Published K. Gielis, K. Verbert, J. Tournoy, and V. Vanden Abeele, “Age? It’s
in the Game: An Exploratory Study on Detection of Cognitive Aging through
Card Games”, en, in Proceedings of the Annual Symposium on Computer-Human
Interaction in Play, Barcelona Spain: ACM, Oct. 2019, pp. 651–664, isbn: 978-
1-4503-6688-5. doi: 10.1145/3311350.3347193

Papers in International Journal (blind peer review)

In Review K. Gielis et al., “Dissecting Digital Card Games to Yield Digital
Biomarkers for the Assessment of Mild Cognitive Impairment: A Methodological
Approach and Exploratory Study”, Journal of Medical Internet Research, Jan.
2021

Published K. Gielis, M.-E. Vanden Abeele, K. Verbert, J. Tournoy, M. De Vos,
and V. Vanden Abeele, “Detecting Mild Cognitive Impairment through Digital
Biomarkers of Cognitive Performance found in Klondike Solitaire: A Machine
Learning Study”, Digital Biomarkers, Jan. 2021, issn: 2504-110X. doi: 10.
1159/000514105

Abstracts in Proceedings of International Conferences

Published K. Gielis, F. Brito, J. Tournoy, and V. Vanden Abeele, “Can
Card Games Be Used to Assess Mild Cognitive Impairment?: A Study of
Klondike Solitaire and Cognitive Functions”, en, in CHI PLAY ’17 Extended
Abstracts, Amsterdam, The Netherlands: ACM Press, 2017, pp. 269–276, isbn:
978-1-4503-5111-9. doi: 10.1145/3130859.3131328

https://doi.org/10.1109/ICHI.2019.8904511
https://doi.org/10.1109/ICHI.2019.8904511
https://doi.org/10.1145/3311350.3347193
https://doi.org/10.1159/000514105
https://doi.org/10.1159/000514105
https://doi.org/10.1145/3130859.3131328




Part II

Detecting Cognitive Decline
due to Cognitive Aging

through FreeCell

25



Chapter 2

Collecting Digital Biomarkers
on Cognitive Health Through
Computer Vision and
Gameplay: an Image
Processing Toolkit for Card
Games

This chapter is a copy of the previously published article:
K. Gielis, J. Kennes, C. D. Dobbeleer, S. Puttemans, and V. V. Abeele,
“Collecting Digital Biomarkers on Cognitive Health Through Computer Vision
and Gameplay: An Image Processing Toolkit for Card Games”, in 2019 IEEE
International Conference on Healthcare Informatics (ICHI), Xi’an, China: IEEE,
Jun. 2019, pp. 1–12, isbn: 978-1-5386-9138-0. doi: 10.1109/ICHI.2019.
8904511

Scientific Contribution:
As first author, I lead the writing of the first draft of the manuscript and
processed suggestions of co-authors. In addition, I coordinated the data
collection and full analysis.

26

https://doi.org/10.1109/ICHI.2019.8904511
https://doi.org/10.1109/ICHI.2019.8904511


INTRODUCTION 27

2.1 Introduction

Worldwide millions of people suffer from cognitive disorders such as depression
(322 million), anxiety (264 million), or dementia (50 million) [126], [127]. Even
milder cognitive impairments such as Mild Cognitive Impairment (MCI) can
hamper several cognitive functions such as attention, executive functioning, or
social cognition. Depression alone accounts for 4.3% of the Global Burden of
Disease, making it the largest cause of disability worldwide [128]. The cost of
dementia, not including the emotional stress on families, was estimated at 818
billion dollars in 2015 [126]. Anxiety and depression combined account for a
global cost of 1.15 trillion dollars per year [129].

Hence, early diagnosis and frequent follow-up of mental health problems are
crucial to managing the disease, allowing for timely treatment and disease
progression mitigation. It ensures finding the best sources of support and
making informed decisions about the future, even if the disorder is untreatable
[30], [130]–[133]. For some cognitive ailments, especially dementia, diagnosis
is often non-existent or made in a later stage of the disease. A study in 2015
reported that 58% of all dementia cases in the USA go undiagnosed [134]. This
is why, in 2017, the World Health Organization (WHO) endorsed the Global
action plan on the public health response to dementia focusing amongst others
on diagnosing cognitive impairments in an earlier stage.

A considerable part of diagnosis and follow-up in traditional medicine involves
the use of biomarkers. Biomarkers are defined by the WHO as “any substance,
structure, or process that can be measured in the body or its products, and that
influences or predicts the incidence of outcome or disease” [135]. They are an
objective way to indicate biological and pathogenic processes or responses to
therapeutic interventions, utilized in the fields of disease prediction, diagnosis,
and prognosis [135]. A well-known biomarker used in medical diagnosis is e.g.,
the presence of Amyloid beta in cerebral spinal fluid for Alzheimer’s Disease
[135], [136]. Asides from biomarkers to aid in the screening, diagnosis, and
follow-up of mental health illness, which are often expensive and invasive,
neuropsychological tests are common practice. Well-known cognitive tests to
aid in the screening for cognitive impairments are e.g., the Mini-Mental State
Examination (MMSE) or the Montreal Cognitive Assessment (MoCA) are used
to screen for dementia [41], [42]. While these tests are less invasive and less
expensive than capturing biomarkers, they are also characterized by lower
specificity and sensitivity [42], [137]–[142]. That is why there is an increasing
interest in digital biomarkers. Digital biomarkers are defined as “objective,
quantifiable physiological and behavioral data that are collected and measured by
means of digital devices such as portables, wearables, implants or digestibles”
[143].
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Digital biomarkers have the possibility to give deeper insight to specialists and
patients, providing a source of data from text interactions, home data, GPS
location, but also games. Mandryk and Birk point out that a variety of activity
traces can be gathered from in-the-wild gameplay of commercial off-the-shelf
(COTS) games and considered as digital biomarkers of cognitive health [100].
The contribution of this paper is to explore gameplay as an additional medium to
capture digital biomarkers for mental health. In particular, this paper presents
a new method of defining digital biomarkers in games and a toolkit for collecting
digital biomarkers of cognitive impairment through gameplay. The toolkit and
method are developed to work with existing card games, i.e., the Microsoft
Solitaire Suite, that people already play and enjoy. Finally, an exploratory data
analysis is shown to demonstrate the feasibility of the toolkit.

2.2 Background

In this section, we first explore the potential digital biomarkers for mental health.
Next, we present games as a viable source for capturing these digital biomarkers.
Next, we explore challenges when games are used that are developed by research
labs. Finally, we present the opportunities of using commercial-of-the-shelves
games as a source of digital biomarkers.

2.2.1 Digital Biomarkers

Today, in the cross-domain of computer science, engineering, biomedicine,
regulatory science, and informatics, interest is growing in the digital counterparts
of biomarkers. The surge in interest has sparked the founding of a journal by
Karger in September 2017 [143] dedicated to this topic only. Compared to
classical pen-and-paper tests, the use of digital biomarkers has shown advantages
such as reduced cost, unobtrusive measurement, and the possibility of continuous
data gathering. In contrast to episodic measurements of classical biomarker
and pen-and-paper tests, which are often taken bi-annually or yearly, digital
biomarkers can be captured on a daily basis. This makes the findings more
robust to patients having a momentary lapse, feeling stressed, examined, or
being tired because of a bad night’s rest. It has also been shown that pen-
and-paper tests are vulnerable to practice effects due to the fixed course of
the tests [88], [144], [145]. More reliable and comprehensive cognitive test
batteries do exist, but these lengthy tests have to be administrated by a trained
health professional and require the often frail participant to go to a specialized
institution. In these specialized institutions, often one specialist is assigned to
follow-up the disease progression as intra-rater reliability is proven to be better
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Figure 2.1: Limited contact moments can cause physicians to miss the bigger
picture [148].

than inter-rater reliability [146]. However, even these specialists suffer from
bias, reducing the overall precision of these follow-up tests [147]. Moreover, as
these specialists are overburdened, contact moments can be sparse. As shown
by the Digital Biomarkers Department of Roche in Fig 2.1, sparse contact
moments can cause neuropsychologist to miss the bigger picture as patients tend
to recall symptoms for smaller time periods than the follow-up period actually
spans [148]. For people suffering from mental degeneration, remembering and
evaluating the severity of symptoms can prove even more difficult.

Digital biomarkers possibly solve many of these problems. They may increase
the ecological validity by increasing the temporal and spatial resolution of
the captured behavior during activities of daily life [61]. Secondly, they may
unlock previously unobtainable sources of behavioral, social, environmental,
and physiological data [149] with minimal effort required from physician and
patient. Finally, as these digital biomarkers are captured by digital devices,
they are less prone to human bias and less susceptible to the white-coat effect
[150].

The advantages of digital biomarkers have sparked several initiatives on diverse
platforms using various sensors. Redfield et al. [151] used accelerometers of
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smartphones to measure gait, finger tapping, voice, and balance as a measure for
Parkinson’s disease. Saeb et al. [152] found strong evidence that mobile phone
sensor data such as GPS and phone usage correlates to depression. Faurholt-
Jepsen et al. and Beiwinkel et al. [153], [154] did research on biomarkers and
bipolarity, correlating smartphone information such as calls, text messages, and
GPS with mental disorders. In a study using the Beiwe app, schizophrenia
relapses were correlated with anomalies in patient behavior prior to relapse
[155]. Hagler et al. [156] created an in-home monitoring system to assess gait,
a predictor of cognitive decline. While in most cases the sample sizes were too
small to draw conclusions about the general population, these experiments show
promise of continuous monitoring of at-risk populations with minimal effort
required from the user.

2.2.2 Digital Biomarkers and Games

Games are a natural source of information on behavior, cognitive performance,
motor performance, social behavior and affect, for people of all ages [100].
According to Suits [81], games are interactive systems, where players present
“a voluntary attempt to overcome unnecessary obstacles”. Through playful
design and intuitive rules, players are motivated to push their own boundaries
[157]. In certain cases, it can even cause a state of flow [158], a gratifying
state where players lose track of time and place because the challenging game
activity necessitates all of their attention and skills. This flow experience is
found enjoying and makes games autotelic; players are intrinsically motivated
to play [81]. As research has shown that a decrease in motivation has an effect
on participant performance of classical pen-and-paper cognitive tests [159], the
potential of games to maximize motivation makes them a suitable medium for
capturing digital cognitive biomarkers.

There are already many examples of gamified collect digital biomarkers that
may be indicative for cognitive performance. Episodix, a gamificated California
Verbal Learning Test, manages to classify individuals into three categories:
healthy, mild cognitively impaired, and Alzheimer Dementia [160]. A mirror
game designed by Słowiński et al. captures digital diagnostic biomarkers in the
form of non-verbal synchrony and neuromotor functions. Utilizing statistical
learning techniques, they could discern users suffering from schizophrenia from
their healthy counterparts, with an accuracy of 93% and specificity of 100% [161].
Neuro-World, a collection of 3D mobile games by Jung et al. [162], estimates
Mini-Mental State Examination scores from gameplay metrics such as score, time
to clear a stage, and the number of cleared levels. Their games test perception,
object memory, sequential memory, selective attention, vigilance attention, and
visual investigation. Leduc-McNiven et al. developed WarCAT and Lock Picking
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[163]. WarCAT, a card game based on War, measures recognition and recall,
while Lock Picking measures problem-solving skills by letting the user search
for an optimal score. Smartkuber, the augmented reality game for cognitive
screening made by Boletsis and McCallum [164] uses five minigames to screen
for cognitive impairments, revealing significant correlations and comparable
validity to the Montreal Cognitive Assessment, a popular neuropsychological
screening test for Mild Cognitive Impairment.

2.2.3 Challenges with serious games

These games fall under the category serious games, defined as “Games that
a serious goal, rather than entertainment, enjoyment or fun, as their primary
purpose”[165]. In this case, their primary purpose is to provide information
on cognitive performance. Unfortunately, research shows that these tailor-
made serious games suffer from disadvantages. First, these games made in
research labs often miss the funding and development time of commercial games.
Developing a serious game that can compare to commercial games in quality is
often out of reach due to differences in manpower, budget, and expertise. As
research cycles differ from game release schemas, it is likely that the game will
be outdated by the time the game is programmed, funding is gathered, and
medical ethical clearance is approved [98]. Maintaining the game and shipping
updates also prove difficult as this is not the main goal of research labs.

Secondly, despite the efforts to make them as enjoyable as possible, research
has shown that custom-made games for cognitive training still fall short in
engagement and suffer from attrition in longitudinal studies. The repetitiousness
of many gamified assessments and training can lead to participant disengagement,
possibly impacting the data quality [84], [166]. Furthermore, it has been reported
that it is the affectionate bond with the experimenter and not the cognitive
training per se that motivated participants to continue [167]. This suggests that
there is a mismatch between the serious games being developed for cognitive
functioning and the games people effectively enjoy playing. It may be that
serious games, while valid with respect to the mental health purpose, perhaps
do not provide ‘meaningful play’[103].

2.2.4 Opportunities of Commercial-Of-The-Shelves games

The playing of commercial games is weaved into the fabric of everyday lives;
such games are part of the socio-cultural environment[103]. As mentioned above,
the power of digital biomarkers lies in its frequent, longitudinal measurement,
stressing the importance of the autotelic nature of games. Boot et al. discovered
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during post-intervention surveys that the games of the control condition, such
as word and puzzle games, were found more enjoyable than those of the gamified
test group [168]. This enjoyment of the game led to higher motivation to adhere
to the cognitive training, indicating that commercial games may be a better
fit for capturing digital biomarkers. This may make COTS games a more
valid, suitable medium to gather digital biomarkers for cognitive performance
[169]. However, the downside of using these commercial, off-the-shelf games
is that the gameplay is less ‘controlled’, they may demand more complex and
variable actions from players, simultaneously addressing multiple cognitive
functions from the players. This interplay of different cognitive functions may
introduce undesired non-therapeutic effects or add uncertainties in screening
and in detecting impairments in cognitive functioning [48].

We are not the first to promote the use of COTS games for assessment of
cognitive performance. Jimison et al. showed that there is a correlation between
Mild Cognitive Impairment and performance in the game FreeCell. They found
that higher variability in scores and more sensitivity to game difficulty are
indicative of cognitive impairment[145]. Thompson et al. explored the relation
between common puzzle games and standard neuropsychological tests and found
that performance on these smartphone-based games is indicative of cognitive
ability across several cognitive domains[169]. Furthermore, working memory
was correlated to sudoku performance by Grabbe, showing the potential of this
popular game for measuring cognitive performance [170].

However, as aforementioned, capturing digital biomarkers in COTS games can
be troublesome, as altering the code of the game is impossible without the
permission of the game developer. An alternative is recording and annotating
gameplay manually, reviewing hours of gameplay, and manually tagging digital
biomarkers. Yet, manually annotating game data reintroduces the limitations of
the aforementioned classic tests. It reintroduces human error, as manually timing
of events is more inaccurate and inconsistent. Secondly, manually annotating
is a time-consuming and tedious task. Finally, it limits the number of metrics
captured, it refrains from capturing certain digital biomarkers. More fine-
grained biomarkers such as speed or certainness of execution are not measurable
from manually annotating gameplay alone. Moreover, if the researchers want to
explore previously uncaptured biomarkers, the annotating process starts anew.

This paper explores a different method for capturing digital biomarkers, namely
computer vision and, more specifically, image processing algorithms. By utilizing
machine learning and image processing, gameplay can be analyzed in real-time
and digital biomarkers can be extracted and processed in an efficient manner. In
order to explore the viability of image processing to capture digital biomarkers
on a COTS game, a multithreaded C++ desktop application was developed
that utilizes the Open Source Computer Vision Library (OpenCV) [171]. It is
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built as a generic toolkit to capture and analyze card gameplay data. It acts as
a silent watcher that unobtrusively captures, processes, and analyses gameplay
from the standard Microsoft 10 Solitaire Collection. Currently, the code of the
game rules is implemented for Klondike Solitaire and FreeCell versions. In the
next sections, we will demonstrate how the toolkit operates by using FreeCell
as an example.

2.3 Toolkit Concepts

This section contains information necessary to grasp the mechanisms behind the
toolkit. First, the rules and board space of FreeCell are illustrated. Secondly,
the method of defining digital biomarkers is explained. Finally, the global
concept of capturing digital biomarkers in gameplay is described.

2.3.1 The FreeCell Board Space

FreeCell is a well-known and popular Solitaire variant. It is played with all 52
cards in a deck, which are all dealt face-up at the beginning of the game. This
transparency of the board makes that almost all FreeCell games are solvable.
Of the original 32000 different starts of the FreeCell game (the Microsoft 32K
variant), only one is deemed impossible to solve, making approximately 99.99%
of all FreeCell deals solvable [172].

As seen in Fig 2.2, the playing board consists of three parts. The large section
at the bottom is called the build stack, where all fifty-two cards reside at the
start of the game, divided over eight stacks. The part at the top left of the
board is called the storage stack. Here, a card can be temporarily stored during
the game. The last section of the board, at the top right, is called the suit stack.
The goal of the game is to move all the cards here. Playing cards comprise four
suits: clubs, diamonds, hearts, and spades. On the corresponding suit stack,
the cards need to be placed per suit in ascending order: starting with the ace,
then two, three, etc., ending with the king. When all the cards are placed on
the suit stack, the game is won.

To accomplish this goal, some rules have to be followed. It is allowed to move
cards from one build stack to another if 1) its rank is one lower than the current
top card of the pile and 2) of the opposite color. For example, a nine of (red)
hearts can be placed on a ten of (black) clubs. The general rule is that only
one card is allowed to move at once. However, cards moved on top of each
other with alternating colors and descending rank are allowed to move to a
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new location, given that there are enough free spots on the build stack and/or
storage stack. The maximum number of cards that are allowed to be moved in
one single move can be calculated with the following equation:

movablecards = (1 + freespots) ∗ 2freecolumns

.

Figure 2.2: The FreeCell Board Space.

2.3.2 From Game to Digital Biomarker

As aforementioned, measuring digital biomarkers from COTS games can
be troublesome since these games simultaneously require multiple cognitive
functions, in contrast to gamified tests, which are custom made to capture a
specific cognitive function. Therefore, it is imperative to outline the methods
that were used to explore, extract and define specific digital biomarkers from
gameplay. In order to translate gameplay into digital biomarkers, we applied a
methodical approach existing of three phases. We first started by creating an
exhaustive list of game events. In the second phase, we converted them into
player mistakes. In the third phase, we quantified these mistakes to transform
them into possible digital biomarkers.

For the first phase, two researchers in the field of human-computer interaction
(KG and VV, co-authors of this paper) and two master students (JK and CD,
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also co-authors of this paper) created a list of all possible game events for the
game FreeCell. The literature on the topic of FreeCell and its rules was gathered,
studied, and processed [145], [172]–[176]. This literature ranged from optimal
solvers to previous cognitive studies to hardness analysis. This gave insight into
the common pitfalls, optimal solving strategies, and cognitive studies previously
done on the subject. Next to this literature study, the game was played in
several sessions. In a series of iterations, a list of game events was drafted
and refined until no more game events were found. Through this processed
literature, in combination with the information gathered through the extensive
gameplay, a thorough, comprehensive list of game events was generated. These
game events consisted, among others, of game outcomes (e.g., game won or
lost), player moves (e.g., storing a card in the storage), and incorrect player
moves (e.g., placing a card on another card with the same color on the build
stack).

In the second phase, to reduce this list and prevent duplicate records for the
same event (e.g., positively and negatively phrased game outcomes), all game
events were converted as player actions that may be indicative of cognitive
impairment. For example: ‘User makes a correct move’ was translated into the
player mistake ‘User makes an incorrect move’. Next, player actions were further
specified. For example, ‘User makes an incorrect move’ was further detailed
into ‘User makes a rank error’ and ‘User makes a suit error’. This resulted in a
set of 16 possible player actions indicative of cognitive performance. Next, this
set of player actions was reviewed again, and only those actions that can be
captured unambiguously via playing behavior were retained. Therefore, player
actions that required insight into the current mindset of the player were not
captured. Additionally, only player actions that are unquestionably erroneous
remained. For example, “Player stores a card with no clear advantage.” was
omitted as well.

Finally, in the third phase of our systematic approach, these remaining player
actions were quantified. In other words, for each player action, the measurable
element was determined as well as the type and range of (i.e., the game outcome
that is measurable on a quantitative scale). These final elements are considered
as potential digital biomarkers as they can be unambiguously captured and are
potentially influenced by cognitive status. For FreeCell, 10 digital biomarkers
were defined. Next to these biomarkers, metadata concerning the games and
moves are captured. Table 2.1 shows all 10 digital biomarkers and metadata as
captured in FreeCell.

All digital biomarkers are designed to measure at the lowest level possible. In
this manner, they can become the building blocks of more complex composite
digital biomarkers. For example, digital biomarkers such as ‘Think time before
making an erroneous move’ or ‘longest error streak’, can always be extracted
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as a combination of these original digital biomarkers. Furthermore, metadata
of the x- and y- coordinates can be used to calculate the speed of moves. By
capturing this information at the lowest level, there are few limitations on the
number of derivatives or combinations of digital biomarkers.

2.3.3 Efficiently Capturing Digital Biomarkers

To efficiently capture digital biomarkers, the toolkit should not process images
when the user is not interacting with the game (e.g., thinking of the next
move). Therefore, event-driven interrupts are programmed to ensure optimal
performance. These events are triggered by the user and consist of a combination
of keyboard, controller, or mouse input. As FreeCell is solely played with the left
mouse button, the event-driven interrupts consist of left-clicking, double-clicking,
and dragging.

The general program flow can be seen in Fig 2.3. First, the program waits
for user events. Secondly, when these events arise, the program immediately
captures the screen and corresponding user input. This combination is crucial
to determine the action and outcome of the user. Thirdly, image processing
is utilized to capture any visual cues of the outcome (e.g., the program cards
that have been moved). Finally, the user input is combined with the visual
cues of the game to evaluate the event. It is crucial that when such a game
event happens, the program stops any calculations it is doing at that point
(e.g., processing previous moves). To solve this, three threads are started at
the beginning of the program. The first thread is the main thread; it processes
inputs and screenshots, stores the digital biomarkers, and handles other critical
information such as coordinates of important locations. The second thread is
purely dedicated to listening and capturing user input. The third thread is
triggered by the user input and captures the next stable screenshot. This last
thread has the highest priority of all threads, as capturing the screen as soon as
possible after the user has made a move is crucial to determine the outcome.

2.4 Implementation

This section contains information concerning the implementation of the program.
First, the setup is illustrated, explaining all necessary steps to play the game.
Secondly, the card region extraction algorithm is clarified. Thirdly, how single
cards are extracted is described. Fourthly, the card classification algorithm is
explained. Finally, performance metrics of the program are given.
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Table 2.1: Digital Biomarkers and Metadata captured in FreeCell.
Digital
Biomarker

Explanation Value

Suit Error (SE) This error is prompted when a
card is placed on another card with
incompatible suits.

total

Rank Error (RE) This error is prompted when a
card is placed on another card with
incompatible ranks.

total

Moved Too
Many Cards
Error (MMCE)

This error is prompted when a card or
a group of cards is moved when there is
not enough room to execute said move.

total

Unmovable Card
Error (UCE)

This error is prompted when the user
tries to move a card which is unmovable
(i.e. there are still cards above the
card that need to be moved before the
original card can be moved).

total

Think Time
(TT)

Think Time is defined as the time
between the last card placed and the
first card touched to make a new move.

ms

Move Time (MT) This is the time necessary for a user
to move a card from one place to the
other.

ms

Game Result
(GR)

The outcome of the game, whether the
user was able to place all cards on the
four suit stacks and won the game.

WON/LOST

End of Game
(EoG)

Whether the user gave up or the game
indicated that there were no more
moves.

YES/NO

Number of
undo’s (NU)

The number of undo’s requested by the
user.

total

Number of hints
(NH)

The number of hints requested by the
user.

total

Move Details Metadata of each move is stored such as
x- and y-coordinates, the selected card,
source location, destination location
and the number of cards moved.

x-coordinate, y-
coordinate, rank/suit
(e.g. 5H for five
of hearts), location
(0-15)

Game
Information

Metadata concerning the game: diffi-
culty of the game, seed to generate the
deal, the starting time, and the end
time of the game is logged

Easy/Normal/Hard,
seed number, UNIX
Timestamp
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Figure 2.3: General program flow.

2.4.1 Setup

Once the program is activated, it starts the Microsoft Solitaire Collection.
From there on, the program continuously monitors the state it is in: playing,
choosing a game, selecting a difficulty, starting a game, ending a game, etc. To
determine the state, the program follows the state diagram as illustrated in
Fig 2.4. Depending on the specific state of the game, interactions of the user
will be interpreted in a different way. For example, in the PLAYING state,
double-clicking will trigger an event to detect changes in the playing board
state. While in the MAINMENU state double-clicking is ignored. To prevent
essential board information from being obfuscated by pop-ups or animations
and to ensure move stability, hints need to be turned off in the settings, as
well as single tap to move, alerts, tutorial, background animations, and end
animations.

As some players may have the game open prior to launching the program, the
game does an initial check on whether the starting state is MAINMENU or
PLAYING. The central state of the program is the PLAYING state. Unless the
player accesses the menu, requests hints, or starts a new game, the program will
just follow the natural game progress. The program processes these changes in
state by detecting button clicks. For these buttons, the dynamic position of the
button is extracted through contour detection.
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Figure 2.4: State diagram of the program.

2.4.2 Card Region Extraction

At the beginning of a game, each card is clearly visible. However, as the game
progresses, some card stacks tend to grow larger and cards tend to overlap
(Fig 2.5). Due to this overlap, each card needs to be extracted (i.e., the visible
portion of each card needs to be separated) and classified (i.e., the rank and
suit need to be determined) at the start of the game. This way, a model of the
entire playing field is mapped. During the rest of the game, only the top cards
are extracted and classified to monitor the progress of the game.

To extract all cards, the screenshot of the board will be split into different pieces
according to the card regions. For FreeCell, as aforementioned, there are eight
regions on the build stacks, four on the storage stacks, and four on the suit
stacks. The coordinates of these 16 card regions will be used to determine the
actual region the user interacts with. To find these regions, the screenshot of
the board is first converted to grayscale, and next, by thresholding converted
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Figure 2.5: At the start of the game, the rank and suit of each card is clearly
visible (left). After the game progresses, the rank and suit can be hidden by
overlapping cards (right).

to a binary image (Fig 2.6). Thresholding is an image segmentation technique
that creates a binary image of a grayscale image based on a manually selected
threshold. Then, all the contours of this image are found using the contour
detection algorithms of OpenCV. Contours are the curves of continuous points
that have the same color, or intensity [171]. After filtering, only the contours
that are larger than the size of a card (i.e., the card stacks) remain. We can
draw a rectangle around each of these contours. The coordinates of these
rectangles are then stored in a vector. This way, we can compare them with the
coordinates of each click, thus being able to detect the cards the users interact
with.

2.4.3 Unique Card Extraction

With the card regions defined, each card can be extracted and classified. The
width of the cards is defined based on the width of the card region contours.
As the ratio between the card width and height is resolution independent, the
height can be inferred from the width. Then, the screenshot is divided into
sixteen card regions as seen in Fig 2.7.

Since cards are stacked, not all are completely visible on the screen. At the start
of the game, cards that are partially visible have an aspect ratio of 0.4 (width
over length). This way, if we extract card images of 0.4 times the card height,
we can extract the card sections with the rank and the suit clearly visible (Fig
2.8). These sections are split in rank and suit using contour detection. They
are stored in separate vectors and are ready for classification.



IMPLEMENTATION 41

Figure 2.6: A threshold image of FreeCell. All relevant information is shown in
white while all noise is eliminated.

Figure 2.7: The 16 Card Regions of FreeCell.
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Figure 2.8: An extracted card region with the first card extracted through the
aspect ratio.

2.4.4 Card Classification

To classify the rank and suit, three algorithms are applied, as shown in Fig 2.9.
First, the contours of the rank are extracted as individual images. Secondly,
the images are rescaled to a standard size (40x50 pixels for ranks, 50x50 for
suits). Finally, the images are converted into a binary black and white image.
These binary images are classified using a k-nearest neighbors classifier trained
on different sets of rank and suit images. With every rank and suit classified, a
digital representation of the board can be build, and consecutive player actions
can be interpreted.

2.4.5 Performance

To test the resource efficiency of our toolkit, a performance test was done
on a computer (8GB RAM, i7 Intel Core 2.7 GHz). The extraction and
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Figure 2.9: (a) detecting the contours of the rank and suit (b) Extracted rank
and suit. (c) The binary image of rank and suit ready for classification.

classification performance of the whole board was tested over 10 different boards.
Classification of the whole board, necessary at the start of the games, took
on average 51ms. The classification of all top cards, necessary for interpreting
moves, took on average 32.1ms. Finally, the extraction and classification of the
game seed number on the top right took on average 260.3 ms. This performance
allows for near real-time evaluation of gameplay, with response times that are
lower than the theoretical limits of what can be perceived by players [177]. This
was confirmed during the exploratory study (see chapter V). Participants of the
exploratory tests did not notice any interference of the program while playing
the game.

2.5 Exploratory Data Analysis

To explore the potential of the toolkit for capturing digital biomarkers, a first
exploratory study was conducted. Digital biomarkers were captured from three
different age groups. According to literature on cognitive performance, age-
related cognitive decline is a natural process [178]–[180]. Primarily working
memory, motor control, episodic memory, spatial ability, reasoning, and
processing speed deteriorate as people grow older [178], [181]. In other words,
people need more time to complete tasks and find it harder to keep important
information in mind. Hence, the impact of age on player actions through digital
biomarkers was explored as it may be indicative of cognitive performance. We
aimed to explore whether digital biomarkers could discriminate among age
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groups and possibly show a decline for the older groups. The biomarkers were
categorized into three groups: Time-related, Error-related, and Outcome-related
Digital Biomarkers.

2.5.1 Method

Digital biomarkers were captured from users across three different age groups
(18-25,45-55,65+). The first age group, from now on referred to as youth,
contained 21 participants. The middle group, referred to as middle-aged,
contained 12 participants. The oldest group, referred to as elderly, contained
11 participants. Each of these participants lived independently, had no known
cognitive impairments or prior cognitive complaints. In addition, all participants
were new to FreeCell.

As they had no previous FreeCell experience, each participant was first briefed
about the rules and mechanics of FreeCell via a fixed presentation. After this
presentation, each participant got to play a practice game (seed number #25001)
[182]. During this practice game, questions were allowed concerning the game
rules. After this practice game, each participant played the same identical
games (seeds #34898, #2365418, and #8840193). The choice for identical seeds
eliminated differences in-game performance due to the chance of having a more
‘generous’ deal. During these three games, questions were not allowed and
players continued playing until they either finished the game, the game ended
because of a lack of possible moves or until the user deemed that he/she was
stuck and requested to end that game.

2.5.2 Results

This data was visually explored to give insight into age-related playing differences.
The goal is to show the possibilities of the toolkit. The information is divided
into three distinct categories: time-related digital biomarkers, outcome-related
digital biomarkers, and error-related digital biomarkers.

Time-related Digital Biomarkers

We were most interested in the digital biomarkers related to time spent thinking
before making a move, as this can possibly correlate to important cognitive
functions for daily activities such as attention, executive function, and planning.
The ‘young’ age group has an average think-duration of 6871.84ms (sd: 2467.59
ms). The middle-aged group has an average think-duration of 10383.40ms (sd:
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5816.19 ms), while the ’elderly’ have an average think-duration of 13423.65ms
(sd: 7089.50 ms) 2.10.

We explored the difference in time spent thinking before an erroneous or
successful move, as seen in Fig 2.11 and Fig 2.12. For successful moves, players
in the youth category thought on average 6805.76 ms (sd: 2402.36 ms), players
in the middle-aged category 10755.85 ms (sd: 5840.93 ms); and the oldest
group 13241.61 ms (6750.04 ms). For erroneous moves, players in the youth
category thought on average 7337.47 ms (sd: 4881.20 ms), players in the middle-
aged category 8487.77 ms (sd: 5462.14 ms); and the oldest group 15448.09 ms
(13395.10 ms). For all age groups, except for the middle-aged group, time spent
thinking before making a successful move was shorter than for an erroneous
move. The average think-duration of each move in time is shown in Fig. 16.
The x-axis indicates the move number of the game, meaning, the first value on
the x-axis corresponds to the first move of the game. The y-axis corresponds to
the average think-duration of that specific move. Concerning Move Time, as
shown in Fig 2.14, people in the young category took on average 1578.82 ms
(sd: 809.52) to move a card. For the middle-aged category, this was 1661.28
ms (sd:791.49 ms). The oldest category took 2103.04 ms (sd: 1298.41 ms) on
average to make a move.

Figure 2.10: Average Think Time. The vertical line resembles the 95% confidence
interval.
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Figure 2.11: Average Think Time for an error.

Figure 2.12: Average Think Time for a successful move.
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Figure 2.13: Average Move Time.

Figure 2.14: Average Think Time on the xth move.



48 COLLECTING DIGITAL BIOMARKERS ON COGNITIVE HEALTH

Error-related Digital Biomarkers

Errors made during gameplay may be indicative of planning, executive
functioning, and attention as players are required to think ahead, processing the
next couple of moves. The average total amount of errors made by each age group
can be seen in Fig 2.15. On average, the youth group made 12.2 mistakes, the
middle-aged group 12.4 mistakes, and the elderly made 7.1 mistakes. Concerning
Rank Errors, the youngest group made 5.3 errors on average, the middle-aged
group 5.0 errors, and the oldest group 3.7 errors. For Suit Errors, 3.5, 3.6,
and 1.6 errors were made on average for the youngest, middle, and oldest
category. Regarding Unmovable Card Errors, the youngest, middle-aged, and
oldest categories made 1.2, 1.3, and 0.5 errors respectively. Regarding the Too
Many Cards Moved errors, the youngest age group made 2.3 errors on average,
the middle-aged group 4.3 errors, and the eldest group 2.5 errors. For requesting
hints, an average of 0.04 was found for the youngest group, 0.25 for the middle-
aged group, and 1.00 for the oldest group. For correcting unwanted moves, on
average, 0.86 was found for the youngest group, 0.31 for the middle-aged group,
and 0.39 for the oldest group.

Figure 2.15: Average Total Errors.
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Outcome-related Digital Biomarkers

Fig 2.16 shows the percentages of the game won and lost. The results display
that the win rate decreases with the increase of age group. The percent of games
won by youth, middle-aged, and elderly is 91.3%, 77.1% and 60.9% respectively.

Figure 2.16: Total Percentage of games won.

2.6 Discussion

Today, many cognitive impairments go undiagnosed, and those patients who
have been diagnosed have sparse follow-up moments with neuropsychologists
due to restricted time and funding. This problem may be mitigated by adding
digital biomarkers to the toolbox of neuropsychological assessment. Previous
research has shown that daily interactions with technology can provide a trail
of information on cognitive performance. This may be an efficient method of
gathering digital biomarkers whilst reducing the effort from the user and the
healthcare system. Such digital biomarkers can help fill in the gap between
consultations and can potentially help in screening, diagnosis, and prognosis of
cognitive health.

In this paper, we explored a novel way of capturing digital biomarkers via
gameplay of card games, by utilizing image processing. The contribution of
our work lies in the presentation of the generic toolkit using image processing,
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and a first exploration of player actions that can be indicative of cognitive
performance.

We built a generic image processing toolkit for card games to collect digital
biomarkers on cognitive health. We chose the Microsoft Solitaire Collection,
coded general image processing algorithms to detect cards, and implemented
game rules for two games: Klondike Solitaire and FreeCell. As these card
games are popular amongst young and old, and weaved in the daily lives of
people, it may be a good fit to capture digital biomarkers. Modularity of the
program was kept in mind while programming, such that this toolkit can easily
be extended to other card games such as TriPeaks and Pyramid. The card
detection algorithm is generalizable for all card games in the Microsoft Solitaire
set, only the game rules need to be implemented. Performance tests showed
that this toolkit is able to capture digital biomarkers at real-time with minimum
stress on the computer. All participants of the exploratory tests did not notice
any interference of the program while playing the game. No visual or auditory
queues came up. The program did not stress the performance of the computer,
gameplay remained as smooth as if the toolkit’s software program was not there.
However, technical improvements can still be made to the toolkit. Up to date,
threshold values are manually selected. This can be set automatically using
techniques such as Otsu Thresholding, making the program more resilient to
changes [183]. Furthermore, currently, all animations need to be turned off to
ensure image stability during processing. Hence, updates could be made to
make the toolkit more durable and less susceptible to animations. Moreover,
more advanced machine learning techniques, such as deep learning, can be
explored to further improve the robustness of classification [184]–[186]. The
toolkit can also be adapted to other 2D-games with minor adjustments. New
game rules need to be implemented and the machine learning models need to
be retrained to detect new targets. Furthermore, new digital biomarkers need
to be defined as not all digital biomarkers from this study are generalizable for
all games.

As a first exploratory study, data from 44 participants from three different age
groups was captured. In this paper, we limited ourselves to visualizing the data
and descriptive statistics. Results from this exploratory study suggest that data
gathered via the generic toolkit can discriminate among different age groups of
cognitively healthy participants and possibly provide information on cognitive
performance. At a group level, all time-related digital biomarkers show a steady
decline the older the age group. This can be expected as cognitive functions
critical to cognitive aging such as processing speed and working memory tend
to decline [187]. As expected, the older the age group, the fewer games were
won on average. However, for Error-related digital biomarkers, the reverse
was true. Older adults made fewer errors than their younger and middle-aged
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counterparts. This could indicate that older adults need more time to think of
a move but make their moves with more caution.

However, as this is a first, exploratory investigation, this study also has its
shortcomings and any interpretations need to be done in a conditional manner.
First, the groups were small and unbalanced, making results not generalizable
to a wider population. Secondly, we compared cognitive healthy age groups
as opposed to groups with cognitive impairments. Thirdly, differences were
found at the group level only, no investigation was carried out at the individual
level. If daily interactions are going to be predictors of cognitive performance,
results should be obtained at the individual level. To this end, data should be
captured over a longer period of time. Results should be compared inter-group
and intra-individually. In this manner, a more accurate analysis of digital
biomarkers as bearers of cognitive information can be performed (i.e., improving
sensitivity and specificity). Hence, in the future, data should be captured over
a longer period of time from larger populations and populations with cognitive
impairments. Ultimately, with the help of machine learning models, cognitively
healthy participants could be discerned from their impaired counterparts on the
basis of multiple combined digital biomarkers. Finally, more complex composite
digital biomarkers should be explored.

2.7 Conclusion

Early diagnosis and frequent follow-up of cognitive health problems are crucial to
managing disease progression, allowing for timely treatment. Digital biomarkers
obtained via gameplay have the potential to aid in early diagnosis of cognitive
health issues. To this end, we developed a generic toolkit for card games
using image processing to capture digital biomarkers indicative of cognitive
performance. First, we applied a methodical approach to define 10 digital
biomarkers indicative of cognitive performance. Next, we implemented the
toolkit, on the top of the Microsoft 10 Solitaire Collection, as a multithreaded
C++ desktop application, utilizing the Open Source Computer Vision Library
to unobtrusively monitor games. Performance tests showed that this toolkit
is able to capture digital biomarkers in real-time with minimum stress on the
CPU. Finally, we conducted an exploratory user study to verify whether we can
discriminate amongst different age groups, characterized by different cognitive
performance due to normal cognitive aging. The results of the exploratory study
suggest, at a group level, that age groups differ. Time-based digital biomarkers
and outcome-related measures show a steady decline the older the age group.
Although this is only a first exploratory study, the results suggest promise of
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the use of games, weaved in the daily life of players, for the capturing of digital
biomarkers for cognitive health.

2.8 Access to the source code

We would like to invite all researchers to build on, repurpose, and utilize
this tool. All source code can be found on https://github.com/kgielis/
ImageProcessingMicrosoftSolitaireCollection. All work based on this
code should be referenced correctly. Fair use and modification is allowed, as
described by The GNU General Public License v3.0.

https://github.com/kgielis/ImageProcessingMicrosoftSolitaireCollection
https://github.com/kgielis/ImageProcessingMicrosoftSolitaireCollection
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3.1 Introduction

The western world population is aging rapidly; the proportion of people over 60
years old will grow from 12% to 22% between 2015 and 2050 [188]. As overall life
expectancy increases, so increases the importance of scrutinizing the complex
relationship between cognition and the aging brain. Even though most people
will not experience dementia, when growing older, they will experience at least
some subtle cognitive changes associated with aging. Cognitive aging is defined
by Blazer as "the process of gradual, ongoing, yet highly variable changes in
cognitive functions that occur as people get older" [13]. Cognitive performance
in older adults may improve in areas building on accumulated knowledge and
experience. Yet, it may decline in other areas related to memory, attention,
delayed recall, processing speed, and executive function [189].

Cognitive aging is a natural, lifelong process and not a disease. Hence, cognitive
aging is different from cognitive decline due to neurological diseases such as
Alzheimer’s disease, cerebrovascular accidents (CVA), or Parkinson’s disease.
Still, the gradual dwindling of certain cognitive functions will eventually lead
to reduced performance on more complex, instrumental activities of daily
living, such as driving a car, optimizing financial decisions, or complying with
therapeutic regimens [13]. Hence, a better understanding of the different changes
in cognition and functioning that accompany aging contributes to taking timely
measures and seeking support for healthy and independent living. Moreover,
a better understanding also helps setting normal cognitive aging apart from
pathological decline such as manifested in Mild Cognitive Impairment, the
precursor to Alzheimer’s [190].

To address the ”grand societal challenge” of cognitive, yet healthy aging [13],
[14], governmental organizations have called for an increase in the research and
development of tools for the longitudinal assessment of cognitive aging and the
charting of cognitive aging trajectories. More specifically, there is a call for the
identification and validation of novel tools that capture cognitive performance
on real-world tasks over a longer period of time, and that are sensitive to early
and subtle changes.

Digital games have long been promoted to understand, measure, and improve
cognition[95]. Already in the mid-eighties, Space Fortress was developed as a
serious game to measure and train memory, attention, dual-tasking ability, and
psychomotor control [94]. To date, it is still used in research labs and perhaps
the most notable and systematic game-based tool to understand the relationship
between fundamental cognitive abilities and skill development [95].

However, it has also been reported that playing Space Fortress can be a
frustrating experience, as it was developed by psychologists, not professional
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game developers [95]. It provides primitive graphics, lacks an engaging story,
and its level of difficulty does not adapt to the player’s skill. Unfortunately, this
reported lack of appeal is not unique to Space Fortress. This may equally apply
to other serious games developed to assess cognitive functioning. Competing
with commercial games is often not feasible, as serious game researchers do not
possess similar budgets compared to AAA games developers. As a consequence,
serious games may appear feeble next to their commercial counterparts that
provide, among others, a superior aesthetic design, various worlds to invoke
curiosity, and complex algorithms to tailor the game’s difficulty to the player.

If video games are to measure cognitive aging in a natural setting and over a
longer period, they must be well designed, and they must consider the preferences
of players. Otherwise, engagement will suffer and adherence to longitudinal
game-based assessment may be low [191]. Therefore, it has been argued to turn
to commercial off-the-shelf (COTS) video games [96], [98]. COTS games, and
in particular casual games, are already played often across different ages and
gender [113], [192]. Playing them is perceived as an enjoyable activity in and of
itself. Often, such games are part of the social fabric of the player’s life [193].
Casual games may equally lend themselves to cognitive assessment and may
even provide a set of ’digital biomarkers’ for cognitive performance [100].

Biomarkers can be defined as “objectively measured and evaluated indicators of
normal biological processes, pathogenic processes, or pharmacologic responses
to a therapeutic intervention” [194]. Two examples of these biomarkers in the
field of dementia are β-amyloid or τ in the human cerebrospinal fluid. The
combined presence of these biomarkers could indicate Alzheimer’s Disease [195].
Digital biomarkers, then, can be understood as “user-generated physiological
and behavioral measures collected through connected digital devices that can
be used to explain, influence and/or predict health-related outcomes” [18].
Digital biomarkers on cognitive performance are those data sources that help
to measure and assess cognition-related functions such as executive function,
attention, memory, performance, etc. [49]. Early results hint at their use in
various conditions such as bipolar disorder, schizophrenia, and cognitive decline
[152], [153], [155], [156].

To summarize, casual games may provide a means of monitoring cognitive
performance over time and follow-up on an individual’s cognitive aging trajectory.
To this end, this study explores the extent to which cognitive aging can be
assessed via casual games. In particular, we investigate whether we can predict
age group on the basis of game data of the popular card game FreeCell, one
of the most popular games of the Microsoft Solitaire collection [196]. Digital
biomarkers of cognitive performance (i.e., game measures indicative of cognitive
aging) were captured using an image processing toolkit, detailed and made
available in previous work [121]. FreeCell gameplay data was gathered from 52
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players, across three different age categories (18-25, 40-55, 65+), playing 130
games. First, game metrics (features) most indicative of cognitive aging were
identified. Next, using machine learning, a model was trained to categorize
participants according to age categories. The results also inform us of which
game metrics are most indicative of cognitive aging. The results also suggest
it is possible to distinguish younger from older players. However, accurate
prediction of middle-aged players was found problematic. We discuss these
findings in relation to known models of cognitive aging and conclude with the
limitations of our machine learning approach.

3.2 Background

In this section, we first provide an introduction to cognitive aging. Next, the role
of games for brain training and assessment is discussed. Finally, opportunities
for casual games as tools to assess cognitive performance are given.

3.2.1 Understanding Cognitive Aging

As aforementioned, cognitive aging is a natural process, selectively affecting
cognitive processes; some cognitive functions are more perceptible to aging than
others. Most of the cognitive abilities robust to aging are classified as crystallized
intelligence, whilst the most sensitive are classified as fluid intelligence [187].
Crystallized intelligence pertains to those skills that are well-practiced or to the
type of knowledge that accumulates over the life span through development,
educational experience, and culture [197]. Examples of crystallized intelligence
are language skills, vocabulary (see Figure 3.1, vocabulary), general knowledge,
or learned practices. Crystallized abilities gradually improve at a slow yet
steady pace to taper off slightly at circa 70 years (see Figure 3.2, full line).
Fluid intelligence, in contrast, points to those abilities involving problem-solving
and reasoning on the basis of new information. Examples of cognitive domains
underlying fluid intelligence are executive functioning, processing speed, and
memory. Many fluid cognitive abilities peak around the age of 25 and then
decline at a steady rate (see Figure 3.2, dotted line) [23], [198].

Age Sensitive Cognitive Abilities

While the above distinction between crystallized and fluid abilities is well-known,
it is limited in detailing the specific changes in cognitive functioning. Therefore,
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Figure 3.1: Means and standard errors for composite scores of diverse cognitive
abilities as a function of age (permission for reprint granted)[23].

Figure 3.2: Fluid and crystallized intelligence across the age span, image adapted
from [199].
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we highlight the underlying cognitive domains most sensitive to aging below,
based on [13], [187], [200].

Processing speed refers to the speed at which cognitive and motor activities
are executed [187]. It can be seen as a measure of the efficiency of cognitive
functioning and is highly sensitive to aging. Moreover, it is a building stone for
other cognitive functions, as decreased processing speed hinders the efficiency
of other cognitive functions such as learning, attention, speech processing, and
memory (see Figure 3.1, Speed).

Attention refers to the ability to concentrate and focus on specific stimuli.
It can also be seen as a measure of the capacity for processing information.
Attention also deteriorates with age. More complex attention tasks are even
more sensitive to aging, such as selective and divided attention. Selective
attention is the ability to focus on specific information in the environment while
ignoring irrelevant information. Divided attention is the ability to focus on
multiple tasks simultaneously, such as talking on the phone while preparing a
meal. Both divided and selective attention are particularly prone to aging.

Working memory refers to the ability to momentarily hold information in
memory while simultaneously manipulating such information. Although
it is often used as a synonym for short-term memory, the term working
memory conveys an additional emphasis on the active manipulation of buffered
information. Older adults perform significantly worse on tasks involving working
memory, such as performing simple calculations.

Declarative (explicit) memory refers to the conscious, long-term process of
storing and recalling information for a longer period. A decline in declarative
memory is perhaps one of the most commonly reported complaints by older
adults. Two types of declarative memory are particularly influenced by aging
(see Figure 3.1, Memory): semantic memory and episodic memory. Semantic
memory involves the capacity to store and recall concepts, numbers, or words
and, in particular, knowing the meaning of the concepts. Semantic memory
shows a decline only in late life, in particular in the ability to store and recall
new words. Episodic memory (also known as autobiographical memory) involves
the conscious recollection of previous autobiographic experiences situated in
time and space and their associated emotions. Episodic memory shows a steady
decline throughout aging.

Executive functioning refers to the ability to self-monitor, plan, organize, reason,
be mentally flexible, and solve problems. Research has shown that such abilities
to self-steer, particularly mental flexibility, decline with age, especially after
the age of 70 years old (see Figure 3.1, Reasoning). Research has also shown
that aging negatively affects response inhibition, which is the ability to inhibit
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automatic responses in favor of producing novel responses.

Visuospatial construction refers to the ability to visually put together individual
parts of an object to make a coherent whole (for example, visually assembling
furniture from a box of parts). Visuospatial construction, closely related to
spatial visualization, also declines over time.

While ample research has demonstrated the effects of cognitive aging on
the aforementioned cognitive functions, it has to be noted that the exact
moment when cognitive functions start to deteriorate and the rate at which
this happens is highly variable from individual to individual [187], [200]. This
variability is due to factors such as life experience, health, educational level,
socioeconomic status, genetics, etc. [13]. Moreover, participation in certain
activities, building cognitive reserve, and engaging in cognitive retraining are
all potential approaches to achieving successful cognitive aging [201].

3.2.2 Video Games for an Aging Population

Video games for brain training

One of the activities to achieve successful aging may be video gameplay. In
the past decade, we have witnessed the proliferation of commercial game-based
programs, claiming to “train the brain” or “mitigate the risk of dementia” (e.g.
Brain Age [202], Lumosity [203], Brain Fitness Program [204]). Many of such
claims lack scientific validation and companies have been fined for deceptive
advertising practices [205]. A meta-analytic video game training study published
in 2018 concluded that there is, currently, no evidence of a causal relationship
between video game training and enhanced cognitive ability [206]. On the other
hand, a systematic review by Shah et al., reviewing the empirical evidence for
commercially available game-based brain training products, lends support to
findings that some commercial brain training games may contribute to healthy
brain aging [207]. Other recent studies suggest that certain game-based training
may improve certain cognitive functions such as cognitive control [208] or visual
attention [209]. Of particular interest are the outcomes of the ACTIVE research
program, the largest study on cognitive training using standardized outcome
measures [210]. Spanning over 20 years and involving 2,832 participants, the
findings suggest that cognitive training may have an impact on processing speed.
Even though the ACTIVE trial was not really a game-based intervention, the
results can support the notion of computerized brain training. These conflicting
results make video game brain training an interesting yet controversial topic.
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Videogames to measure cognitive aging

In this paper, we use games as tools to measure and achieve insight into
cognitive aging, as opposed to the abovementioned studies that focus on using
video games for the training of cognitive functions. Video games have been
and are increasingly being to aid in the understanding and measuring of
cognitive capacity, brain plasticity, development, and aging, and individual
differences(Boot, 2015). As aforementioned, Space Fortress [94], an outcome of
the Learning Strategies Program, funded by the Defense Advanced Research
Projects Agency [211], was perhaps the first game to be explicitly designed to
measure cognitive functions such as memory, attention, dual-tasking ability,
speed, and psychomotor control in a standardized manner. Up to this day, Space
Fortress is still being used by many researchers [212]. Additionally, in the past
years, many game researchers have designed various serious games to understand
and measure specific cognitive functions, such as virtual wayfinding navigation
[213], inhibitory control [214], visual attention [215], executive function [216],
episodic memory [160], etc.

Of particular interest is the recent work of Silva Neto et al. and Tong et al.
[217], [218]. Silva Neto et al. created three serious games and compared the
performance of these games against the various cognitive domains of the Montreal
Cognitive Assessment (MoCA). They found correlations with every domain of the
MoCA except abstraction, supporting the notion of serious games as a means of
cognitive evaluation. Tong et al. carried out a validation study for their whack-a-
mole type of game in a hospital emergency environment. Significant correlations
were found between game performance and multiple cognitive assessments,
including but not limited to the Mini-Mental State Examination (MMSE),
Montreal Cognitive Assessment (MoCA), and the Confusion Assessment Method
(CAM).

Unfortunately, these serious games risk being accused of ‘chocolate-covered
broccoli’ [219], i.e. neuropsychological tests superficially repackaged as games
[95], [96]. It has been reported that participants of game-based interventions,
designed to measure and train cognitive functions, lack motivation [82], [220],
[221]. This lack of meaningful play becomes increasingly problematic for those
games that aim to measure and understand cognitive aging not as a single-point-
in-time measurement in a research lab, but rather as a tool for longitudinal
measurement in the context of the home.
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Casual games to provide meaningful play

To ensure meaningful play, it may be useful to turn to those games that are
already played often and perceived as an enjoyable, meaningful activity in and
of itself, i.e., Commercial-Of-The-Shelf (COTS) games. Characteristic for these
games is that they are part of the social fabric of the gamer’s life [193]. They have
been appropriated and are not part of the reductionist discourse that focuses
on gameplay solely to mitigate decline [107]. While players do not play these
games for serious cognitive health purposes, they may still be used to measure
cognitive performance. Moreover, playing COTS games is not reserved for a
young audience. Contradictory to common prejudice, studies show that digital
games are played across different age spans and gender[192]. Research findings
consistently report that although only 10% of those who play games identify
themselves as “gamers” [222], approximately 50% of all ages and genders play
games. Across different demographic groups, the most common game genre are
puzzle games and strategy games [223]. When analyzing game genre preferences
specifically for older players and female players, again the importance of “casual”
games (e.g., card games, puzzle games)[113] is emphasized.

COTS games to assess normal&pathological cognitive ageing

Today, casual games are already being used to measure and understand cognitive
aging. Yet most studies rely on statistical techniques to correlate performance
outcomes of games with outcomes on classic neuropsychological tests [169].
For example, Baniqued et al. [96] examined the degree to which commercially
available video games tap into certain cognitive abilities, and found performance
outcomes of casual games categorized as tapping into working memory and
reasoning to correlate with neuropsychological test outcomes of working memory
and fluid intelligence tasks.

To date, few studies attempt to model and present algorithms for inferring users’
cognitive performance. Notably, Jimison et al. present techniques for monitoring
computer interactions with FreeCell to detect sustained changes in cognitive
performance [145]. However, the monitored user interactions were limited to the
appropriateness of a move (as compared to a solver). Hagler et al. developed
a computational model of executive function based on a decomposition of the
gameplay data of a scavenger hunt type of game [216]. Leduc-McNiven equally
explored models for cognitive performance [163]. However, it remains unclear to
what extent these models have been empirically validated. Moreover, gameplay
data seems to be limited to more optimal versus less optimal player moves.

Mandryk and Birk point out that a variety of activity traces gathered from
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in-the-wild gameplay of COTS games can be considered as digital biomarkers of
cognitive health [100]. However, when dealing with a multitude of biomarkers,
this necessitates the use of computational approaches for big data. To this end,
they provide a machine learning pipeline for digital game-based biomarkers of
cognitive health (see Figure 3.3).

Figure 3.3: The machine learning pipeline as put forward by Mandryk and Birk
[100], dotted rectangles visualize those elements used in this study.

3.2.3 FreeCell

FreeCell is a popular Solitaire variant that can be found on every Windows 10
computer in the Microsoft Solitaire Suite [182]. The game board is composed
of three parts: storage, suit, and build stacks (see Figure 3.4). At the start of
the game, all cards are dealt face-up.

Similar to other Solitaire games, FreeCell is won when all cards are moved to
the respective suit stacks, starting with the aces and ending with the kings. To
realize this, a player has to move cards. Cards can be moved from one build
stack to another, only if its rank is one lower than the current top card of the
pile and of the opposite color. The storage stack can be used as a place to
temporarily store cards to a maximum of four cards, one per spot. The general
rule is that only one card can be moved at a time. However, when there are
sufficient empty places at the build stack and/or storage stack, groups of cards
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Figure 3.4: The FreeCell board space.

with alternating colors and descending rank are allowed to be moved in one go
to a new pile on the build stack.

Specific to FreeCell is that 99.99% of all deals are solvable [172]. Moreover,
since all cards are dealt face-up at the start of the game, this makes it a game
of strategy, not of sheer luck. As a result, the game is popular, particularly
among older players [193]. Moreover, since the release of Windows 95, Microsoft
has shipped its operating system with the Microsoft Solitaire Collection. Given
the popularity of Microsoft’s version of FreeCell [182], its omnipresence, and its
focus on strategic planning, it was deemed a good candidate for the longitudinal
collection of digital biomarkers on cognitive performance.

Therefore, this study explores the extent to which cognitive aging can be
predicted via digital biomarkers captured via FreeCell play. To this end, we
followed the pipeline as put forward by Mandryk and Birk [100], illustrated in
Figure 3. First, digital biomarkers of cognitive performance were captured using
a toolkit for image processing of card gameplay [121], from three distinctive age
groups (18-25,40-55,65+). Next, features were engineered and selected. Finally,
a machine learning model was trained. If successful in predicting age group,
this may indicate that differences in cognitive performance due to cognitive
aging can be detected through casual gameplay.
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3.3 Method

3.3.1 Participant Details

The participants were recruited using a snowball sampling method from three
age groups. The youngest category (18-25) will be referred to as ‘younger
adults, the middle category (40-55) as ‘middle-aged adults’, and the oldest
category (65+) as ‘older adults’. Inclusion criteria were that each participant
lived independently, had no prior cognitive complaints or a history of mental
illnesses, no medical conditions that could influence the measurement (i.e.,
motor and visual disorders), and, important, no prior experience in playing
FreeCell, to assure we were capturing fluid rather than crystallized intelligence.
At the start of each game session, demographic information concerning the
participant’s gender, use of the computer, and education level was inquired (see
Table 3.1).

Table 3.1: Demographic information of the participants per age group.
18-25 40-45 65+

Age Average:21.87
SD:1.92

Average:48.69
SD:3.83

Average:70.95
SD:4.64

Gender Male:12
Female:8

Male:7
Female:9

Male:10
Female:6

Highest
Obtained
Diploma

Elementary:2
High school:9
Bachelor’s:3;
Master’s:6

Elementary:0
High school:2
Bachelor’s:6
Master’s:8

Elementary:1
High school:6
Bachelor’s:5
Master’s:4

Computer Use Daily:18
Weekly:2
Yearly:0
Never:0

Daily:14
Weekly:2
Yearly:0
Never:0

Daily:13
Weekly:0
Yearly:1
Never:2

3.3.2 Capturing Digital Biomarkers in COTS Games

Capturing digital biomarkers was done via an image processing toolkit for card
games [121], built to work for the standard Microsoft Solitaire Collection, and
allowing for unobtrusive measurements of digital biomarkers. The program acts
as a silent watcher, identifying every card on the game board and analyzing



METHOD 65

every move of the player. It utilizes machine learning and image processing to
analyze gameplay in real-time, extracting and processing digital biomarkers in
an efficient manner. The toolkit is generalized for the entire Microsoft Solitaire
Collection, meaning that the same card detection algorithms can be used for
every Solitaire game on the platform. Currently, the game logic is implemented
for Klondike and FreeCell, with TriPeaks, Spider, and Pyramid being developed.
More information on the toolkit and its inner workings can be found in [121].

3.3.3 Digital Biomarkers in FreeCell

A methodical approach consisting of three phases was used to explore, define,
and extract digital biomarkers found in FreeCell. For the first phase, an
exhaustive list of game events was defined. Two researchers (KG and VDA)
and two master students studied the literature on the topic of FreeCell and its
rules [145], [172]–[176]. Next, the game was played for several sessions. The
insights from the literature and the game sessions were distilled into a list of
game events. This list was drafted and refined until no more game events were
found. These game events consisted, among others, of game outcomes (e.g.,
game won or lost), player moves (e.g., storing a card in the storage stack), and
incorrect player moves (e.g., placing a card on another card with the same color
in the build stack).

For the second phase, the list was curated to prevent duplicate records for the
same game event. This resulted in a set of 16 events indicative of cognitive
performance. Next, this set of player actions was reviewed again, and only
those actions that could be unambiguously captured via playing behavior were
retained. Player actions that required insight into the current mindset of the
player were not captured.

In the end, seven potential candidates to form digital biomarkers remained.
Next to these, metadata concerning the games and moves was captured as well,
such as the game seed, start and end time, etc. (See Table 3.2).

3.3.4 Procedure

Each game session was played in a distraction-free environment. As the
participants were unfamiliar with the game, each participant was first briefed
about the rules and mechanics of FreeCell via a fixed presentation. After
this presentation, each participant got to play a practice game (seed number
#25001) [182]. After this practice game, each participant played up to three
identical games (seeds #34898, #2365418, and #8840193), data was captured
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Table 3.2: Digital biomarkers and metadata captured during FreeCell.
Digital Biomarker Explanation Form
Suit Error (SE) This error is prompted when a

card is placed on another card with
incompatible suits.

total

Rank Error (RE) This error is prompted when a
card is placed on another card with
incompatible ranks.

total

Moved Too Many
Cards Error (MMCE)

This error is prompted when a card
or a group of cards is moved when
there is not enough room to execute
said move.

total

Unmovable Card Er-
ror (UCE)

This error is prompted when the
user tries to move a card which
is unmovable (i.e. there are still
cards above the card that need to
be moved before the original card
can be moved).

total

Think Time (TT) Think Time is defined as the time
between the last card placed and the
first card touched to make a new
move.

milliseconds

Move Time (MT) This is the time necessary for a user
to move a card from one place to
the other.

milliseconds

Game Result (GR) The outcome of the game, whether
the user was able to place all cards
on the four suit stacks and won the
game.

WON/

LOST

Move Details Metadata of each move is stored
such as x- and y-coordinates, the
selected card, source location, desti-
nation location and the number of
cards moved.

x-coordinate,
y-coordinate,
rank/suit (e.g.
5H for five
of hearts),
location(0-15)

Game Information Metadata concerning the game: the
difficulty of the game, seed to
generate the deal, the starting time,
and the end time of the game is
logged

Easy/Normal/
Hard, seed
number,
UNIX
Timestamp
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using the toolkit. The choice for identical seeds minimized differences in game
performance due to the chance of having a more ‘generous’ deal. During these
three games, questions were not allowed, and players continued playing until
either they finished the game, the game ended because of a lack of possible
moves, or until the users deemed that they were stuck and requested to end the
game. As not all participants were willing or able to complete all three games,
a total of 130 games were captured for 52 persons.

3.3.5 Tools and Machine Learning Process

Data coming from the toolkit underwent several phases to optimize the machine
learning model: preprocessing, outlier detection, feature engineering, and feature
selection. To achieve this, Jupyter Notebooks was used with as main libraries:
pandas and NumPy for data manipulation and analysis, seaborn for data
visualization, and scikit-learn for machine learning [224]–[228].

Once the data was cleaned, the dataset was randomly split into test data and
training data with stratified age group sampling. As is good practice, this test
dataset was not used until the final evaluation, where the retrained model was
put to the test by classifying this new data.

We experimented with different classifiers; multiple machine learning algorithms
were trained and compared. However, a discussion of the performance of the
different models is beyond the scope of this paper. Logistic Regression was
the best model for our data set. This is in line with the findings that this is
a classifier that works well with a smaller data set and a smaller number of
features [229].

The training data was first used to tune the hyperparameters of the model
and to get insight into the general performance of the model [229]. Generally,
a training set is further split into a training and validation set. However, for
smaller datasets (as ours), this can be problematic, as this would render the
training or validation set too small. To solve this, 10-fold validation was applied,
this method is visualized in Figure 3.5 [229].

Once the hyperparameters were optimized, the learning curves of the model
were plotted to detect the level of over- and underfitting in the model (see
Figure 3.6). Overfitting can be caused by various factors, such as too many
features, too little data, too many iterations, etc. A good learning curve should
have similar scores for the training as well as the cross-validation data. A high
training score and a low cross-validation score can be a sign of overfitting, while
both a low training and cross-validation score can be a sign of underfitting [230].
Once it was confirmed that both over- and underfitting were as low as possible,
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the model was put to a final test. Scoring measures for multiclassification such
as ROC-plots, confusion matrices, and performance metrics such as accuracy
and F1-score were calculated.

Figure 3.5: Illustration of the 10-fold validation, used in our study as
recommended for smaller data sets [231].

Figure 3.6: Learning curve of the logistic regression algorithm with 24 features.
The discrepancy between training and cross-validation score is a strong indication
of overfitting.
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3.4 Results

3.4.1 Preprocessing

To prepare our data for classification, unnecessary meta-data such as usernames
or the exact starting time of the game were deleted as this brings no cognitive
information to the machine learning model. For every user, the correct age
category was assigned.

3.4.2 Outlier Detection

Outliers were removed according to Tukey’s fences [232], games with feature
values that were larger than 1.5 times the interquartile range were removed.
This caused 25 games to be removed, leaving 105 games up for classification.

3.4.3 Feature Engineering

Next, additional features were generated, combining the candidates for digital
biomarkers of Table 3.2. These composite or derivative digital biomarker
candidates were established based on insights gathered from observing the
players during data acquisition. Table 3.3 provides all features used to train
the machine learning models.

3.4.4 Feature Selection

As we have 24 features for a limited dataset, feature selection has to be done
with care. Training machine learning models with too many features can lead
to overfitting. This phenomenon happens when the model captures the noise of
the data. In the end, this results in a model that performs well on the training
set but performs significantly worse on the validation, such a model is not
generalizable for unseen data. To inspect for correlation between features, a
correlation plot was drawn (see Figure 3.7). This correlation plot shows that
many errors and time related measurements are heavily correlated. Adjacent to
the full correlation plot, a strip with the highest correlations of features with
age group is shown. Moreover, the learning curves of the first logistic regression
model on the basis of 24 features showed strong discrepancies between the
training and cross-validation score (Figure 3.6). This indicates that the model
is heavily overfitted and will possibly not perform well on newer observations.
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Table 3.3: Overview of the 24 digital biomarkers, both basic and composite,
used as features for machine learning.
Digital Biomarker Explanation Features
Game Result The outcome of the game. WON/Lost
Error Percentage The number of errors divided by the

total amount of moves
percentage

Suit Error Percent-
age

The number of suit errors divided
by the total amount of moves

percentage

Rank Error Percent-
age

The number of rank errors divided
by the total amount of moves

percentage

Moved Too Many
Cards Error

The number of moved too many
card errors divided by the total
amount of moves

percentage

Unmovable Card
Errors

The amount of moved unmovable
card errors divided by the total
amount of moves

percentage

Maximum Error
Streak

The longest streak of error moves of
that game

total

Number of Moves The total number of moves made in
the game

total

Number of Storage
Moves

The total number of moves spent
manipulating the storage

total

Total Time Total time spent for that game total
Think Time The time between the last card

placed and the first card touched
to make a new move.

Average, stan-
dard deviation

Think Time Success Time spent thinking before execut-
ing a successful move

Average, stan-
dard deviation

Think Time Error Time spent thinking before execut-
ing an erroneous move

Average, stan-
dard deviation

Move Time Time spent moving a card Average, stan-
dard deviation

Move Time Success Time spent moving a card before
executing a successful move

Average, stan-
dard deviation

Move Time Error Time spent moving a card before
executing an erroneous move

Average, stan-
dard deviation

Cards Moved The number of cards moved each
move.

Average, stan-
dard deviation
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Figure 3.7: Correlation plot for the full feature set.
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Figure 3.8: Correlation plot for the reduced feature set.
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To counter this overfitting, the number of features was reduced. Upon
experimentation, the following 11 features were selected based on a series
of iterations: Game Result, Total Time, Number of Moves, Maximum Error
Streak, Think Time (average and standard deviation), Move Time (average
and standard deviation), Cards Moved (average and standard deviation), and
Error Percentage. The motivation of this selection is that these features contain
maximum information (e.g., error percentage contains information of all errors
made) or that they contain information based on observations during game
sessions and/or theories. The correlation plot for the reduced feature set can
be seen in Figure 3.8.

3.4.5 Training, Validating, and Testing of the Model with 11
Features

All games were again split into train and test data with a 75% to 25% distribution.
Stratified sampling was used to ensure that every age category was equally
represented in both sets. To make sure every class was balanced, Synthetic
Minority Oversampling (SMOTE) was applied to the training set [233]. This
is a robust oversampling method that minimizes the impact on the model. A
standard scalar was applied to prevent larger ranging features from influencing
the model [234]. Models were trained and hyperparameters were tuned using a
10-fold cross-validation random search with accuracy as scoring metric.

Furthermore, learning curves (Figure 3.10) were plotted and inspected to detect
under- and overfitting. This time the discrepancy between training and cross-
validation scores was less severe. Finally, the confusion matrix (Figure 3.9),
Receiving Operating Characteristic (ROC) curve with Area Under Curve (AUC)
(Figure 3.11), and performance metrics (Table 3.4) were calculated to evaluate
the final model.

The performance metrics of the model to discriminate the three classes range
from 0.615 (Precision) to 0.734 (AUC). The confusion matrix shows that young
adults can be well discriminated (nine correctly classified and two misclassified),
whilst middle-aged adults (4 correctly classified and 5 misclassified) and older
adults (4 correctly classified and 3 misclassified) are more often misclassified.
The ROC curves further detail that younger adults and older adults can be well
discriminated in one-versus-all situations, as their respective AUC’s are 0.88
and 0.81. However, for the middle-aged adults versus-all situation, an AUC of
0.45 can be noted, performing below what is to be expected by chance. This
lowers the overall performance of the model.
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Table 3.4: Performance metrics of the test set.
Accuracy Precision Recall F1 AUC
0.630 0.615 0.621 0.629 0.734

Figure 3.9: Confusion matrix of the test set.
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Figure 3.10: Learning curves for the optimized model.

Figure 3.11: ROC and AUC for each class (one-versus-all).
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3.5 Discussion

In this paper, we explored to what extent we can predict age groups based on
differences in cognitive performance due to cognitive aging. For this classification,
we relied on digital biomarkers detected and captured via FreeCell gameplay.
The contribution of our work lies in the investigation of digital biomarkers most
indicative for cognitive performance, using COTS games, and the exploration
to which extent machine learning models can be used to classify games into
their respective age groups. To the best of our knowledge, this study is the first
study to attempt to predict the age group on the basis of digital biomarkers
obtained through casual gameplay.

3.5.1 Adequate Performance Metrics

Interpreting the performance metrics of our model is not straightforward, given
the lack of other comparative studies that use COTS games to predict cognitive
aging. Beyond the realm of player-computer interaction, in medical diagnosis,
high AUC’s (>.95) are sought. However, in applied psychology, AUC values of
.70 and higher are already considered as strong effects [235].

Scrutinizing our model further, our results suggest that we can predict young
participants with good performance, but we are less successful in classifying
middle-aged participants and distinguishing them from older adults. This lack
of performance for this middle-aged group might be found in the limited data
set. The learning curve of our model has not converged completely, and a rising
trend can be noted. This suggests that adding more data points is beneficial and
that performance would likely improve with more participants. However, it may
also be that the model reflects the variability that is inherent in cognitive aging
trajectories. As emphasized by [187], [200], the age at which cognitive functions
start to deteriorate and the rate at which this happens is highly variable from
individual to individual. Given the lack of other comparative studies, it remains
unclear what performance measures can actually be expected. To this end, this
paper can set a first benchmark and stimulate other researchers to outperform
this model.

3.5.2 Relating Features to Cognitive Aging

As can be seen from the correlations between features and age group (Figure
3.8), the features with the highest correlations were time-based. Older adults
spent more time thinking before executing either a successful or erroneous move.
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They also spent more time moving the card itself. This confirms the sensitivity
of ‘processing speed’ to cognitive aging [187], [210]. Our study also demonstrated
that older adults moved fewer cards to the storage stacks, a necessary part to
progress in the game. This suggests they did not play as strategically as young
and middle-aged participants, aligning with a lesser performance of executive
functioning [187].

3.5.3 Suitable for Longitudinal Measurement

Ultimately, for the charting of cognitive aging trajectories, COTS games like
FreeCell are to be played on a continuous basis. These continuous measurements,
as opposed to episodic measurements, are likely to be more resistant to
unwanted factors such as stress, dehydration, or tiredness, as opposed to episodic
measurements in memory clinics [54], [199], [236]. Our observations confirmed
that participants were eager to play FreeCell, even after the game session ended.
Anecdotal remarks from these game sessions support the hypothesis that such
games would be played frequently and over a longer time period.

3.6 Limitations

As aforementioned, this is a first exploratory study. Our inference from the
data is based on theoretical backgrounds of cognitive aging and calendar age.
No validated instruments were used to measure cognitive performance or motor
proficiency of our sample. Individual dispositions, socio-economic status, and
lifestyle choices may significantly influence cognitive aging. Therefore, follow-up
research should investigate the addition of validated instruments to measure
cognitive functioning as this would improve the validity of measuring cognitive
aging. Predictions relying on these measures instead of calendar age could
improve the performance of the models as these are more directly linked to
cognitive performance.

Moreover, we relied on a limited sample and learning curves suggest it may
be beneficial to add data points. Finally, we only used the tool for a single
point in time measurement. Ultimately, such a game-based measurement would
span several months and be done frequently to equally capture intra-individual
differences, giving deeper insight into the personal cognitive profile of the player.
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3.7 Conclusion

In this study, we investigated to what extent we can predict cognitive age from
player data from the COTS game FreeCell, as part of the Microsoft Solitaire
Collection. Fifty-two participants, belonging to three age groups (young, middle-
aged, and older adults) played 130 games. Candidates for digital biomarkers
were captured using an image processing toolkit tailored to capture digital
biomarkers from card gameplay. Features were engineered, and a machine
learning model, based on Logistic regression, was trained. Performance metrics
range between 0.615 (Precision) and 0.734 (AUC). Upon inspecting the ROC
curves and confusion matrix, it becomes apparent that the model is successful
in classifying the youngest and oldest age group, but is less successful for the
middle age group. Given the lack of other comparative studies, it remains
unclear to what extent the low performance metrics for the middle-aged group
are the result of a limited sample or rather because of the inherent variability
in cognitive aging between individuals. Nevertheless, the results show that
COTS games lend themselves to capturing biomarkers for cognitive performance
and that these biomarkers support current theories on fluid versus crystallized
intelligence.
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4.1 Introduction

Mild Cognitive Impairment (MCI) is a clinical entity defined as a transitional
state between normal and pathological aging, where one or more cognitive
domains are significantly impaired yet activities of daily living are still preserved
[3]. Early detection of MCI is important for signaling possible prodromes of
dementia, monitoring the progression of possible decline, taking supportive
measures, and detecting any possible underlying causes. Unfortunately, cognitive
impairment is still underdiagnosed [34]–[36]. In response, governmental bodies
have called for novel, scalable, and longitudinal tools to assist in the early
screening and monitoring of dementia [15]–[17]. To answer this call, researchers
have explored the use of digital games as a suitable medium for assessing
cognitive impairment [145], [160], [163], [237]. Games are autotelic in nature,
tapping into the intrinsic motivation to play [81], [238], hence captivating
a player’s attention. Furthermore, digital games are a natural source of
information on player behavior, cognitive performance, motor skills, social
conduct, and affective experiences [100].

As such, digital games may help by providing digital biomarkers of cognitive
performance. Biomarkers, defined as “objectively measured and evaluated
indicators of normal biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention” [194] have a longstanding tradition in
dementia research [137], [239]. Complementary to their biological counterparts,
digital biomarkers are “user-generated physiological and behavioral measures
collected through connected digital devices to explain, influence and/or predict
health-related outcomes” [18]. User interaction with digital games produces
dense and detailed behavioral traces that may inform on the users’ social health,
praxis, and cognition.

Today, the focal point of research assessing cognitive performance has been
serious games, i.e., games intentionally designed and built for a serious purpose,
and not solely to entertain [93]. While serious gaming interventions show
potential, they are typified by lesser funding, shorter development cycles, and
missing know-how of the video game industry, which affect in-game quality such
as graphics, music, and storytelling [98], [240]. This may lead to frustrating
player experiences, a lack of engagement and lesser attention during gameplay,
which may lower the reliability and validity of any findings, and possibly cause
attrition in longitudinal studies [82], [99], [168]. Therefore, most recently,
Mandryk&Birk [100] have argued turning to commercial off-the-shelf (COTS)
video games instead. Instead of spending limited resources on building a
serious game, researchers can devote themselves to investigating existing games
already enjoyed by the target population. While not designed to measure
cognition, COTS games are woven into the fabric of everyday life and may be



BACKGROUND 83

able to provide digital biomarkers of cognitive performance that are reflective
of cognitive status [100], [122].

This study aims to explore the possibilities of COTS card games to screen
cognition amongst MCI patients. First, it describes a study involving 11 experts
in the domain of MCI to craft 23 candidate digital biomarkers from the digital
card game Klondike Solitaire. Subsequently, a data acquisition campaign was
set up involving 46 participants: 23 healthy older adults and 23 older adults with
MCI. Participants were asked to play three games on a tablet. We examined the
game data on differences at a group level for the candidate digital biomarkers
using a Generalized Linear Mixed Model (GLMM) Analysis. The results show
that 12 out of 23 candidate digital biomarkers differ significantly between both
groups, taking age, tablet experience, and Klondike experience into account.
By providing a methodological approach and an exploratory study for crafting
digital biomarkers, articulating the rationale and the different steps taken, we
hope to inform future researchers who aim to leverage the use of commercial
off-the-shelf video games to yield digital biomarkers

4.2 Background

4.2.1 Mild Cognitive Impairment

Persons diagnosed with MCI show a deficit in cognition in at least one cognitive
domain that cannot be attributed to age or any other disease, yet they do not
fulfill the diagnosis of dementia [101]. Persons with MCI however, have a higher
risk of progressing to a form of dementia such as Lewy body dementia [31],
vascular dementia [241], or, the most common form of dementia, Alzheimer’s
Disease [242]. Depending on the early symptoms, persons with MCI can be
classified into two groups: amnestic MCI (aMCI) and non-Amnestic MCI
(naMCI). The aMCI group shows a significant memory deficit, whereas for
naMCI mainly a non-memory impairment (e.g. language) is present [243]. For
both aMCI and naMCI, a further distinction can be made between persons with
one cognitive domain impaired (single domain MCI), and multiple cognitive
domains impaired (multiple domain MCI). Even though no treatments exist
with the current state of modern medicine to cure the neuronal damage of
these progressive forms of dementia [7], [8], early diagnosis matters [9], as there
are several measures that can be taken to slow down disease progression [10],
starting (non-) pharmacological treatment for delaying symptoms [7], [8], [10],
or support patient and family with the appropriate counseling [11].
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4.2.2 Detecting Mild Cognitive Impairment

Typically, the process leading to a diagnosis of MCI is set into motion by
a cognitive complaint from the older adult, relative, or (informal) caregiver,
followed by a presumptive identification through a screening test. The most
used cognitive screening tests for MCI are the Montreal Cognitive Assessment
(MoCA) [41] and the Mini-Mental State Examination (MMSE) [42]. These
cognitive screening tests primarily focus on evaluating language, visual skills,
memory, orientation, attention, and executive functions [244]. Despite their
widespread use, the psychometric properties of the screening tests alone are
insufficient to draw firm conclusions regarding MCI diagnosis [245].

Therefore, this presumptive identification is in turn followed by an elaborate
neuropsychological assessment (i.e., a cognitive test battery) and possibly a
biomarker scan or a neuroimaging scan [101], [243]. This neuropsychological
assessment assesses cognitive skills and level of impairment more thoroughly. In
addition, they may include a semi-guided interview with a relative or caregiver
to evaluate the change in symptoms over time such as in the Clinical Dementia
Rating scale (CDR) [246]. However, this neuropsychological assessment is
laborious and time-intensive, requiring skilled test administrators, who despite
their training, are still subject to interassessor variability [46]. In addition, from
a patient perspective, the process has been described as bewildering, highly
stressful, and even humiliating [50], [51], contributing to malperformance. This
in turn can make patients self-aware of impairment, leading to feelings of distress
or helplessness, possibly spiraling into even worse performance [52], [53]. While
biological and imaging biomarkers are becoming more common to support
diagnosis, they remain expensive and invasive which makes them equally unfit
for high-frequency measurements [46]. As a result, health professionals and
policymakers welcome additional tools supporting monitoring of cognition [3],
[56]–[59] which reduce patient-level barriers and are more considerate of patients’
experiences [52].

4.2.3 Serious Games for the Assessment of Cognitive Func-
tions

Serious (digital) games are “games that do not have entertainment, enjoyment,
or fun as their primary purpose” [93]. One early and longstanding tradition [94]
is the use of serious games for cognitive evaluation [83]. Space Fortress[93], [94]
is perhaps the first research game to measure and train cognitive control and
related cognitive functions. Ever since, the popularity of creating serious games
and game-based interventions to measure, detect, and train cognition has only
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increased, as indicated by systematic reviews on this topic by Ferreira-Brito et
al. [89], Lumsden et al. [84], and Valladares-Rodriguez et al. [83].

Serious games may provide certain advantages for the assessment of cognitive
performance compared to standard cognitive assessment. Firstly, by offering
an interactive and immersive audiovisual experience, serious games can be
considered to be more engaging than classical tests [82]–[84]. As ensuring the
full attention of the participant is paramount in neuropsychological testing,
such increased engagement may also result in more reliable research results;
previous research has linked effort to cognitive test performance in healthy
undergraduate students[159]. Second, games allow embedding cognitive tasks
in a (virtual) audiovisual world that more closely mimics the actual lived-in
world, allowing for better transfer of task results and providing higher ecological
validity [247]. However, it has to be noted that skills learned through serious
games might still be difficult to generalize to skills needed in a real life context
[247]. Third, serious games can be designed in such a manner that they minimize
the need for the presence of a trained administrator. Setting a pace, reading
out loud, or cueing can be integrated into the game itself. In this manner, test
administer bias is reduced and white-coat effects can be minimized [47], [150].
If assessments are possible with less supervision and manual effort, this is also
more scalable, as testing becomes less resource-intensive [247]. However, this
lack of supervision while measuring has an important caveat. Measurements
made in a personal environment make it more difficult to prevent distractions
that influence gameplay behavior.

Even though serious games show promising results and have merit for patient
and physician, serious games are at risk of being accused of being ‘chocolate-
cov[95]–[97]; neuropsychological tests disguised by a thin layer of gameplay.
This can lead to games that are suboptimal in terms of aesthetic quality and
game mechanics [98] and negatively impact gameplay [95]. A meta-analysis of
serious games [99] shows that while serious games can be more effective and
improve retention compared to conventional methods, they are not found more
motivating. Similar signs of lack of motivation have been noted in game-based
interventions designed to train cognitive functions [82], [168].

This lack of sustained engagement contrasts with surveys on gameplay among
older adults. A large scale (n=3737) survey of older adults’ attitude towards
video games, conducted in 2019 by the American Association of Retired Persons
[85], highlights that older adults enjoy playing digital games. Out of nine reasons
to play, “to have fun” was indicated to be the top reason (78%) to play video
games, “to help stay mentally sharp” comes in second (69%). In the 70+ age
category, this difference becomes marginal with 73% indicating “to have fun”
and 72% indicating “to stay mentally sharp”. Therefore, to increase engagement
and to tap into intrinsic motivation, popular COTS video games may present
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an interesting alternative. These games are already woven into the daily life of
the older adult, providing meaningful play [103], [193].

4.2.4 Commercial Off-The-Shelf Video Games for Mental
Health

COTS games may have the ability to retain players over a longer period and
to support continuous measurements of cognitive performance. As frequent
measurements are more sensitive to detecting small deviations in cognitive
performance of older adults [48], this could lead to a better interpretation
of the patient’s cognitive trajectory. Furthermore, fluctuations in cognitive
performance [248], a common feature of dementia, may be more easily detected.
Additionally, this continuous monitoring enables establishing an intraindividual
cognitive baseline [61]. This cognitive baseline can be used to compare patients
with themselves, as opposed to comparing to normed references. In turn, this
can lead to improved management and care [3]. Nevertheless, a prominent
disadvantage of COTS games is that researchers have less control over which
cognitive functions are measured in the game [96].

Recent research studies on using COTS games to measure cognitive impairment
have generated promising results. Jimison et al. [145] used FreeCell to compare
cognitive performance amongst an MCI group and a healthy control group,
by means of an ‘optimized solver’ . Their results indicated that based on
gameplay, the group with MCI could be discerned from the healthy control
group. Regarding Sudoku, another popular game amongst older adults, Grabbe
[170] showed that performance in the game was significantly related to measures
of working memory. Using a set of smartphone-based puzzle games, which also
contained Sudoku, Thompson et al. [169] explored smartphone-based games
as a means of portable cognitive assessment and monitoring. Performance of
these games correlated to several measures of cognition, among which visual
memory, verbal learning, and reasoning. Finally, Wallace et al. [237] developed
a word search and Sudoku game that incorporated hints to reduce frustration
amongst MCI patients. Their first study with two patients indicated that
cognitive performance could be measured with COTS gameplay, comparing game
performance with the MoCA and the Repeatable Battery for the Assessment of
Neuropsychological Status [249]. Synthesizing these results, these studies suggest
that COTS games yield promise for the assessment of cognitive impairment but
that further research is warranted.

Across the previously mentioned studies, different lines of reasoning are given to
justify the game of choice as suitable for neuropsychological evaluation. Grabbe
[170] analyzed components of Sudoku and linked them to working memory
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based on a subjective analysis. Jimison et al. [145] chose FreeCell because it
was the most popular game in their focus group. Wallace et al. [237] chose a
word search game and sudoku above other games due to certain properties such
as the percentage of successful deals. Lastly, Thompson et al. [169] chose games
based on face validity with regards to target cognitive functions. While these
reasons are valid arguments for choosing a game, it can be noted that these
studies have no arguments rooted in empirical evidence for their game of choice.

4.2.5 Klondike Solitaire

One of the most popular card games among older adults is Klondike Solitaire,
also known as Patience, Fascination, or even just Solitaire [111]. The popularity
of Klondike Solitaire amongst older adult gamers was recently noted by Boot
et al. [114]. For one year, participants had access to a computer where
eleven games were installed, amongst which Sudoku, Solitaire, and crossword
puzzles. They noted that “There was a strong, clear preference for Solitaire [. . . ].
After Solitaire, there was no clear second choice, and on average participants
infrequently played the other games.” Additionally, their results showed that of
all games, Solitaire was being played most consistently of those 11 games.

This popular card game is played with a standard 52-card deck with 28 cards
dealt in seven build stacks and the other 24 cards put in a pile, as can be seen
in Figure 4.1. The goal of the game is to order all cards from ace to king on
the four corresponding suit stacks. Cards can be moved on top of other build
stacks if their rank is one lower than the current top card and of the opposite
color. Cards can be requested from the pile to be put on the talon.

4.2.6 Study Objective

Given the popularity of Klondike Solitaire among the older population, and
given the need for engaging, ecologically valid, scalable tools to assist in the
screening and monitoring of MCI , this paper set out to investigate the feasibility
of Klondike Solitaire to yield digital biomarkers of MCI . To this end, the study is
comprised of the following investigations: 1) an exploration of digital biomarkers
of cognitive performance, based on player actions of Klondike Solitaire and 2)
an evaluation of candidate digital biomarkers captured in Klondike Solitaire to
measure differences between healthy older adults and older adults living with
Mild Cognitive Impairment.
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Figure 4.1: Klondike Solitaire. The seven build stacks can be seen at the bottom,
the suit stacks are at the top left. The pile of undealt cards can be seen in the
top right.

4.3 Crafting Candidate Digital Biomarkers in Klondike
Solitaire

To explore the potential digital biomarkers of cognitive performance present
in Klondike Solitaire, we first conducted an expert consensus study, involving
11 experts. In this first part of the paper, we discuss the three steps taken to
come to a final list of 23 candidate digital biomarkers.

4.3.1 Step 1: Defining Player Actions

To transform gameplay into player actions (PA’s), a methodical approach was
applied. Four researchers in the field of human-computer interaction carried
out the following tasks. First, the literature on Klondike Solitaire was studied,
ranging from scientific work [115], [176], [250]–[254] to more general sources
[255]–[257]. Afterward, the game was played for a minimum of ten sessions of
thirty minutes by each of the researchers. Combining this theoretical background
with practical experience, a list of game events was drafted, first independently,
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then reviewed in team. This list was iterated three times until no more game
events were found. Game events included, but were not limited to, game
outcomes (e.g., the game was won or lost), correct player moves (e.g., the player
moves a card between build stacks), and erroneous player moves (e.g., player
moves cards on each other which are not in descending order on the build stack).

This set of game events were then converted to player actions; they were
described as an action of the player rather than an event of the game. Next, all
these player actions were transformed into their negative equivalents, e.g., “The
Player takes little time to think of a move” was reworded as “The Player takes a
lot of time to think of a move.” The reason for this is twofold. It causes duplicate
PA’s (the positive and negative equivalent, e.g., moving cards fast or moving
card slowly) to be combined, reducing rating complexity for the professionals.
Furthermore, the negative equivalent aimed to facilitate the rating process as
impaired cognition will lead to reduced performance in gameplay. After this
step, 21 player actions (see Table 4.1) were defined for evaluation.

4.3.2 Step 2: Defining Cognitive Functions

A set of cognitive functions was drafted in five phases (see Figure 4.2). A first
draft was made starting from the cognitive functions tested in the most used
MCI screening tests [41], [42], [258]. Next, during a trial with one psychologist,
we replaced abstraction with object recognition to more clearly indicate problems
with finding cards based on key articles on cognitive aging and cognition [187],
[259]–[262]. In addition, to better delineate attention it was specified as selective
attention. In phase 4, a pilot study was done with an expert on memory and
age-related disorders (with 23 years of clinical and research experience). Based
on this pilot testing, it was decided to split executive functioning into inhibitory
control, cognitive planning, and mental flexibility. Memory was further specified
as working memory, and lack of motor skills as apraxia. In the final iteration,
cognitive functions ostensibly not present in Solitaire, i.e. orientation in time
and space, and language, were removed to reduce the rating complexity. This
resulted in a set of nine cognitive functions which can be found in Figure 4.2
phase 5.
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Figure 4.2: The five phases through which the cognitive functions present in
Klondike Solitaire were identified.
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Protocol for Rating Functions and Actions

As a next step, experts were asked to rate the extent to which each player
action was related to a specific cognitive function. These experts were recruited
using a snowball sampling method starting from two leading memory clinics
in Belgium. Three experts were a Doctor of Medicine experienced in cognitive
decline and eight (neuro)psychologist. Seven participants identify as female,
four identify as male. The average age of all participants is 45 years (SD=
13.3) with an average amount of working experience of 20years (SD=14). Three
co-authors of this paper (LVA, PD, and FFB) also participated as an expert.
None of the experts were compensated for participating in the study.

Before rating, every expert received a standardized introduction comprising
a video that explains all concepts of the game [263], a video that visualizes
all 21 Player Actions [264], and a document that explains all nine cognitive
functions. This introduction aimed to prevent confusion concerning the game
terminology, interpretation of player actions, and cognitive functions. It also
included a delineation of the target group to amnestic multiple domain MCI .
Experts could revisit these videos and documents at any time.

After this introduction, every expert received a coding sheet where they could
map the 21 player actions to the nine cognitive functions. Each cell had to be
filled in according to the following four-point scale:

0: This cognitive function has no significant correlation to the player action.
1: This cognitive function correlates weakly to the player action.
2: This cognitive function correlates moderately to the player action.
3: This cognitive function correlates strongly to the player action.

Finally, they were also given the choice to explain their train of thought in the
optional further clarification column.

Expert Agreement on Player Actions and Cognitive Functions

The intraclass correlation ( ICC) for each player action as variables of interest
with cognitive functions were computed. Additionally, we computed ICC’s for
each of the cognitive functions as variables of interest with all player actions
considered as observations [265]. All calculations were executed using IBM
SPSS Statistics 23 [266]. The ICC was calculated to verify the rater agreement
[267] on player actions and cognitive functions, based on a two-way random
fully crossed design with type consistency [268]. According to the criteria of
Koo et al. [269], ICC’s lower than 0.5 are indicative of low reliability, ICC’s
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between 0.5 and 0.75 are indicative of moderate reliability, ICC’s between 0.75
and 0.9 are indicative good reliability, and ICC’s greater than 0.9 are indicative
of excellent reliability.

We found intraclass correlations for all player actions to score above 0.75,
suggesting good to excellent reliability according to Koo et al. [269]. Except for
four cognitive functions (i.e., Mental Flexibility, Visuospatial Ability, Object
Recognition, and Apraxia which score 0.68, 0.42, 0.66, and 0.71, respectively),
all intraclass correlations of cognitive functions scored above 0.75, suggesting
good to excellent reliability.

Cognitive Functions present in Klondike Solitaire

An overview of the associations between individual player actions and cognitive
functions, according to the expert mapping can be found in Table 4.1. In
addition, a full overview of all Intraclass Correlations with 95% confidence
intervals can be found in section 4.4. We found that all player actions were
related by the experts to one or more cognitive functions with an average
association above two, which indicates a moderate to strong relation to the
cognitive function. Similarly, we found that for each cognitive function, at least
one player action has an average association above two.
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PA1. Player takes a
lot of time to think of
a move.

1.64
±1.12

0.73
±1.01

1.82
±0.4

1.55
±0.82

1.18
±0.98

1.27
±0.79

0.27
±0.47

2.45
±0.52

2.55
±0.82

PA2. Player takes a
lot of time to move the
card.

0.73
±1.01

0.73
±1.1

0.64
±0.5

0.64
±0.67

1.45
±1.04

0.64
±0.67

1.64
±0.92

0.91
±0.83

2.09
±1.04

PA3. Player does not
move a suitable card
from the talon to the
suit stack.

2.27
±0.79

0.73
±0.9

2
±0.77

2.55
±0.69

1.45
±0.93

1.64
±0.67

0.73
±1.01

2.18
±0.75

0.91
±1.04

PA4. Player does not
move a suitable card
from the build stack to
the suit stack.

1.82
±0.98

0.91
±0.83

1.82
±0.75

2.36
±0.67

1.36
±0.92

1.36
±0.92

0.27
±0.47

1.73
±0.79

1±1
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PA5. Player does not
move a suitable card
from the talon to the
build stack.

2.18
±0.75

1.27
±0.9

1.91
±0.7

2.64
±0.67

1.55
±1.04

1.73
±0.79

0.18
±0.4

2.09
±0.94

0.82
±1.08

PA6. Player does not
move a suitable card
from one build stack to
another build stack.

2.36
±0.81

1.09
±0.94

2
±0.77

2.45
±0.69

1.45
±0.93

1.64
±0.92

0.18
±0.4

2.18
±0.98

0.73
±1.01

PA7. Player does not
place an ace immedi-
ately on an empty suit
stack.

1.27
±1.01

0.73
±1.01

2.18
±0.4

2.36
±0.92

1
±0.77

1.18
±1.17

0.45
±0.69

2.09
±0.7

1.09
±1.04

PA8. Player does not
put a king on an empty
build stack.

1.45
±1.13

0.73
±0.9

2
±0.77

2.27
±0.9

1
±0.77

1.55
±1.13

0.36
±0.67

2.09
±0.7

1
±0.89

PA9. Player moves
cards without benefit
(e.g. putting a jack
from one lady to an-
other).

1.45
±1.04

1.82
±0.98

2.18
±1.17

1.64
±1.03

0.82
±0.75

1.45
±1.21

0.18
±0.4

2.27
±1.01

0.45
±0.52

PA10. Player flips a
lot through the pile.

2
±0.89

2.55
±0.69

1.73
±1.01

1.82
±1.08

1
±0.89

1.45
±1.13

1
±1

2.09
±1.04

0.91
±0.7

PA11. Player moves a
card onto a card with
the same color.

1.73
±1.1

2.55
±0.52

2.18
±0.98

2.18
±0.98

1
±1

1.82
±1.17

0.27
±0.65

1.36
±0.81

0.45
±0.69

PA12. Player moves a
card to another card
with the wrong num-
ber (E.g., placing a
five on a ten).

1.18
±1.08

2
±1

2.27
±0.9

1.91
±0.94

1.09
±1.04

2.09
±0.94

0.45
±0.69

1.45
±0.93

0.36
±0.5

PA13. Player selects
the cards with a very
bad precision (taps on
edge or next to the
card).

0.45
±0.69

0.73
±0.79

0.27
±0.47

0.64
±0.81

2.27
±0.9

0.82
±0.75

2.27
±0.79

0.45
±0.82

0.45
±0.69
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PA14. Player starts
tapping on the play-
field with no apparent
target (with short in-
terval, fidget tapping).

0.73
±0.79

2.27
±1.01

0.27
±0.47

0.82
±0.87

0.73
±0.9

0.45
±0.52

1.55
±1.29

0.91
±1.04

0.73
±0.9

PA15. Player presses
the undo button a lot.

1.82
±0.6

2.45
±0.69

1.73
±1.1

1.36
±1.12

0.64
±0.67

0.64
±0.67

0.73
±1.01

2.27
±1.01

1.27
±1.1

PA16. Player requests
a lot of hints.

1.91
±1.04

1.73
±1.01

2
±1

1.45
±0.93

0.64
±0.81

1
±0.77

0.45
±0.69

2.27
±1.01

1.18
±0.75

PA17. Player takes a
very long time to finish
games.

2.18
±1.25

1
±1.34

2.18
±0.75

1.64
±1.21

1.09
±0.83

1.18
±0.98

0.91
±0.83

2.64
±0.5

2.91
±0.3

PA18. Player does not
have a high score in
the game.

2.18
±0.98

2
±1

2.36
±1.03

1.91
±1.04

1.45
±0.93

1.36
±0.92

0.91
±0.94

2.27
±0.9

1.55
±1.04

PA19. Player does not
win a lot of games (low
win ratio).

2.36
±0.67

1.82
±1.08

2.64
±0.5

2
±1

1.36
±0.92

1.18
±0.87

1
±0.89

2.82
±0.4

1.64
±0.81

PA20. Player’s scores
of different games vary
greatly.

2.27
±1.1

1.64
±1.12

2.27
±0.79

2.36
±1.12

0.73
±0.9

0.73
±0.9

0.64
±0.92

2.18
±1.08

1.82
±1.08

PA21. Player’s win
ratio decreases rapidly
as the difficulty of the
game increases.

2.36
±0.67

1.91
±0.94

2.64
±0.67

2.18
±0.87

1.18
±0.87

1.09
±0.94

0.82
±0.87

2.64
±0.81

1.64
±1.03

Table 4.1: Average of the experts’ ratings for each Player Action and Cognitive
Function.
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4.3.3 Step 3: Defining Candidate Digital Biomarkers

These player actions were captured via the game as potential digital biomarkers,
i.e., measurable factors of the game such as score duration of the game, detailed
moves etc. These candidate digital biomarkers were enriched with additional
information about the game. This contextualization is important to ensure
an unambiguous interpretation of the cognitive information derived from the
gameplay. For example, whereas a game played with a lot of moves on the pile
may indicate that a player progressed in the game, it may equally indicate that
the player does not realize that they are stuck. By calculating the percentage
of pile moves by dividing it by the total amount of moves made, a more
informative metric can be obtained. In this manner, 23 potential digital
biomarkers were defined which we further classified in one of five categories:
time-based, performance-based, error-based, execution-based, auxiliary-based,
and result-based. Time-based digital biomarkers are biomarkers related to the
speed of player actions. Performance-based digital biomarkers are biomarkers
related to optimal gameplay (i.e., is the game played according to strategies
that ensure optimal performance). Error-based digital biomarkers relate to
making incorrect moves according to the Solitaire rules. Auxiliary-based digital
biomarkers are interactions that are not part of the core gameplay, i.e., requesting
undo’s and hints. Finally, result-based digital biomarkers are biomarkers that
evaluate the final outcome of the game (e.g., how far did the participant get in
the game). A full overview of all digital biomarkers and their contextualizations
can be found in Table 4.3.3.
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4.4 ICC Results

Variable of interest Intraclass
Correlation

95% Confidence Interval

Lower
Bound

Upper
Bound

Cognitive Function
Mental Flexibility 0.68 0.43 0.85
Inhibitory Control 0.83 0.69 0.92
Working memory 0.82 0.67 0.91
Selective Attention 0.81 0.66 0.91
Visuospatial Ability 0.42 -0.03 0.73
Object Recognition 0.66 0.39 0.84
Apraxia 0.71 0.48 0.86
Cognitive Planning 0.79 0.62 0.90
Processing Speed 0.87 0.78 0.94

Player Action
PA1 0.92 0.81 0.98
PA2 0.84 0.63 0.96
PA3 0.87 0.70 0.97
PA4 0.85 0.64 0.96
PA5 0.90 0.76 0.97
PA6 0.91 0.78 0.98
PA7 0.91 0.78 0.97
PA8 0.87 0.69 0.96
PA9 0.88 0.71 0.97
PA10 0.87 0.69 0.97
PA11 0.87 0.70 0.97
PA12 0.82 0.56 0.95
PA13 0.94 0.85 0.98
PA14 0.83 0.59 0.95
PA15 0.90 0.75 0.97
PA16 0.86 0.68 0.96
PA17 0.91 0.78 0.97
PA18 0.86 0.68 0.96
PA19 0.91 0.78 0.98
PA20 0.91 0.79 0.98
PA21 0.93 0.84 0.98
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4.5 Evaluating Digital Biomarkers

The aim of this second study was to explore the potential of these candidate
digital biomarkers of cognitive performance. Relying on 46 participants, we
captured data and performed a Generalized Mixed Model analysis to examine
differences between healthy participants and participants diagnosed with MCI .

4.5.1 Participants

In total, 23 healthy participants and 23 participants with MCI ) participants were
enrolled. Older adults with MCI were recruited by two of the leading memory
clinics in Belgium. Healthy participants were recruited using a snowball sample
starting from multiple senior citizen organizations. All healthy participants
had a minimum age of 65 years, were fluent in written and verbal Dutch, had
20/20 (corrected) vision, no motor impairments, and lived independently or
semi-independently at home, service flat, or care home. Exclusion criteria
for healthy participants were subjective memory concerns from participant,
caretaker, or clinician. Additionally, they were screened using the MMSE,
MoCA, and CDR. To minimize the risk of including potential individuals with
MCI among healthy participants, a cut-off score of 27 on the MMSE, 26 on
the MoCA, and a score of 0 on the CDR were enforced. Participants living
with MCI were formally diagnosed with multiple-domain amnestic MCI based
on Petersen’s diagnostic criteria [33] by one of the two collaborating memory
clinics. Participants with MCI were excluded when scoring less than 23 on
the MMSE to avoid including participants which are on the border between
the diagnosis of MCI and dementia. In addition, all participants recruited had
prior experience with Klondike Solitaire. This familiarity with the rules was
imperative as participants with MCI may have problems with memorizing and
recalling new game rules in their short-term memory. Moreover, the rationale
underlying this study is to draw from games already played and enjoyed by
participants and where the rules are crystallized in memory. Demographic and
basic neuropsychological data of both groups can be found in Table 4.3.

1PA’s 20, and 21 were not captured as the single-point-in-time setup would not allow
comparing scores and win ratio’s with ranging difficulty over time. In addition, PA9 was not
tested as the current software would not allow for detecting these moves.



100 DISSECTING DIGITAL CARD GAMES TO YIELD DIGITAL BIOMARKERS

Table 4.3: Demographic and Neuropsychological Data.
Healthy (n=23) MCI (n=23)

Age 70 (SD=5.4) 80 (SD=5.2)
Educationa 22% 30% 48% 17% 57% 26%
Sex (F/M/X) 47% 53% 0% 57% 43% 0%
Tablet Proficiencyb 52% 9% 0% 9% 30% 13% 9% 9% 4% 65%
Klondike Proficiencyb 13% 26% 13% 47% 0% 30% 35% 9% 26% 0%
MMSE Score 29.61 (SD=0.65) 26.17 (SD=1.75)
MoCA Score 28.09 (SD=1.28) NA
CDR Score 0 (SD=0) NA
a Participants were categorized into three education groups based on the 1997
International Standard Classification of Education (UNESCO United Nations
Educational, Scientific and Cultural Organization 2003): a. ISCED 1/2 b.
ISCED 3/4 c. ISCED 5/6.
b Participants were categorized into five proficiency groups based on frequency
of use: a. Daily b. Weekly c. Monthly d. Yearly or less e. Never

4.5.2 Data Collection Tools

All game sessions were completed on a Lenovo Tab 3.10 Business tablet running
Android 6.0. A Solitaire application created by Bielefeld [270] under the LGPL 3
license was modified to capture and store game metrics which served as building
blocks for the digital biomarkers of cognitive performance.

4.5.3 Data Collection Procedure

Each observation was carried out between 9 AM and 5 PM in the home
environment of the participant to ensure a familiar and comfortable environment.
An observation took between two to three hours and consisted of two main
parts: 1) a game session where game-based digital biomarkers of Klondike
Solitaire were collected on a tablet and 2) a neuropsychological examination
where cognitive information was collected.

Each game session started with a standardized five-minute introduction where
the tablet, the game mechanics, and possible touch interactions were explained.
This was followed by a practice game, identical for all participants, where
questions to the researcher were allowed and the participant could get used to
the touch controls. Data from this practice game was not used for analysis.
After this practice game, the participant played three games in succession. The
order and games were equally identical across all participants. All games were
purposefully chosen through prior playtesting, in that they were solvable, and
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varied in difficulty level. During these three games, no questions were allowed
and gameplay continued until the participants either finished the game or
indicated that they deemed further progress impossible. All game sessions and
cognitive evaluations were conducted by the same researcher to avoid differences
due to researcher bias.

4.5.4 Ethical Statement

This study is in accordance with the declaration of Helsinki and GDPR compliant.
Ethical approval was given by the Ethics Committee of UZ/KU Leuven, Belgium,
CTC S59650. Due to the fragile nature of our participants, utmost care was
given to inform them. Tests were conducted solely after written informed
consent.

4.5.5 Statistical Analysis

To assess the difference between healthy participants and participants diagnosed
with MCI , a GLMM analysis was performed using R [271] with the lme4 library
[272]. Concerning the design of our GLMM, the fixed effects comprised of MCI,
age, tablet proficiency, and Klondike proficiency. Random effects were modeled
as random intercepts for gameseed and participant. In addition, by-participant
random slopes for the effect of MCI were modeled.

Continuous digital biomarkers (e.g., Think Time Average) were modeled using
a GLMM with the identity link function. Binary outcomes (e.g. Solved or
not solved) were modeled using a GLMM with the logit link function. The
significance of the effect of MCI was determined using the Likelihood Ratio
Test which compares the model with a model without the effect of MCI, both
estimated without Restricted Maximum Likelihood [273], [274]. Assumptions
of homoscedasticity and normality were visually inspected using residual plots.
To provide supplemental information on the fit of the models, the marginal R2,
and the conditional R2 are given, as specified in [275]. Given the exploratory
nature, we did not correct for family-wise inflation error [276].

4.6 Results

The results of the GLMM summary on the effect of MCI can be found below.
A visualization of digital biomarker performance for all groups across all games



102 DISSECTING DIGITAL CARD GAMES TO YIELD DIGITAL BIOMARKERS

can be found in Figures 4.3,4.4,4.7,4.5,4.8. A summary can be found in Table
4.6.6.

4.6.1 Time-based Digital Biomarkers

For time-based digital biomarkers (Figure 4.3), MCI significantly affected Think
Time Average (chi2(1)= 7.658, p= 0.006), increasing it by 1119.947 ms ±
405.81 (SD). MCI equally significantly affected Think Time Standard Deviation
(chi2(1)= 5.173, p= 0.023), increasing it by 1112.533 ms ± 490.53 (SD). However,
MCI did not significantly affect Move Time Average (chi2(1)= 2.737, p= 0.098)
or Move Time Standard Deviation (chi2(1)= 2.651, p= 0.103). MCI significantly
affected Total Time Average (chi2(1)= 5.286, p= 0.021), increasing it by 1278.263
ms ± 573.84 (SD), and Total Time Standard Deviation (chi2(1)= 4.16, p=
0.041), increasing it by 1315.598 ms ± 673.67 (SD).

4.6.2 Performance-based Digital Biomarkers

For performance-based digital biomarkers (Figure 4.4), MCI did not significantly
affect Final Beta Error Percentage (chi2(1)= 0.213, p= 0.645). MCI did equally
not significantly affect Beta Error Percentage (chi2(1)= 0.836, p= 0.36), Ace Beta
Error Percentage (chi2(1)= 0.117, p= 0.733), or King Beta Error Percentage
(chi2(1)= 0.506, p= 0.477). MCI significantly affect Pile Move Percentage
(chi2(1)= 7.544, p= 0.006), increasing it by 13.333% ± 4.88 (SD).

4.6.3 Error-based Digital Biomarkers

For error-based digital biomarkers (Figure 4.7), MCI significantly affected
Successful Move Percentage, (chi2(1)= 5.949, p= 0.015), lowering it by 8.913%
± 3.6 (SD). MCI did also significantly affect Erroneous Move Percentage,
(chi2(1)= 4.892, p= 0.027), increasing it by 3.624% ± 1.65 (SD).

4.6.4 Execution-based Digital Biomarkers

For execution-based digital biomarkers (Figure 4.5), MCI significantly affected
Accuracy Average (chi2(1)= 4.085, p= 0.043), lowering it by 3.817 % ± 1.9
(SD). MCI did not significantly affect Accuracy Standard Deviation (chi2(1)=
0.036, p= 0.849) or Taps, (chi2(1)= 3.82, p= 0.051).
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4.6.5 Result-based Digital Biomarkers

For result-based digital biomarkers (Figure 4.6), MCI did not significantly
affect Gametime (chi2(1)= 3.071, p= 0.08). MCI significantly affected Solved
(chi2(1)= 6.93, p= 0.008), lowering it by 2.63 ± 1.01 (SD). MCI also significantly
Cards Moved Average (chi2(1)= 4.928, p= 0.026), lowering it by 0.119 cards ±
0.05 (SD), and Cards Moved Standard Deviation (chi2(1)= 6.733, p= 0.009),
lowering it by 0.38 cards ± 0.15 (SD).

4.6.6 Auxiliary-based Digital Biomarkers

For auxiliary-based digital biomarkers (Figure 4.8), none of these candidate
biomarkers reached significance: Undo Move Percentage (chi2(1)= 0.467, p=
0.494), Hint Move Percentage (chi2(1)= 2.402, p= 0.121).
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Figure 4.3: Performance on time-based digital biomarkers for both groups.
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Figure 4.4: Performance on performance-based digital biomarkers for both
groups.
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Figure 4.5: Performance on execution-based digital biomarkers for both groups.
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Figure 4.6: Performance on result-based digital biomarkers for both groups.
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Figure 4.7: Performance on error-based digital biomarkers for both groups.

Figure 4.8: Performance on auxiliary-based digital biomarkers for both groups.



RESULTS 109

D
ig
it
al

B
io
m
ar
ke
r

C
on

st
an

t
(S
D
)

β
(S
D
)

p
C
hi

2
R

2m
(R

2c
)

T
im

e-
ba

se
d

T
hi
nk

T
im

e
Av

er
ag

e
-1
37

1.
77

8
(1
41

5.
44

4)
11
19
.9
47

(4
05

.8
15

)
0.
00

6
**

0.
41

6
(0
.9
04

)

T
hi
nk

T
im

e
St
an

da
rd

D
ev
ia
tio

n
-8
14

.5
27

(1
72

0.
07

3)
11
12
.5
33

(4
90

.5
3)

0.
02

3
*

0.
21

1
(0
.6
55

)

M
ov
e
T
im

e
Av

er
ag

e
-5
08

.5
75

(3
73

.8
9)

15
6

(9
5.
54

7)
0.
09

8
0.
25

7
(0
.5
79

)

M
ov
e
T
im

e
St
an

da
rd

D
ev
ia
tio

n
-8
56

.6
05

(8
47

.8
52

)
32
3.
59
9

(2
02

.0
32

)
0.
10

3
0.
13

7
(0
.4
19

)

To
ta
lT

im
e
Av

er
ag

e
-9
12

.4
19

(2
14

9.
17

7)
12
78
.2
63

(5
73

.8
39

)
0.
02

1
*

0.
31

8
(0
.8
70

)

To
ta
lT

im
e
St
an

da
rd

D
ev
ia
tio

n
20

6.
56

9
(2
67

6.
06

2)
13
15
.5
98

(6
73

.6
65

)
0.
04

1
*

0.
17

6
(0
.7
15

)

Pe
rfo

rm
an

ce
-b
as
ed

Fi
na

lB
et
a
Er

ro
r

-7
.2
33

(4
.1
31

)
0.
43
5

(0
.9
22

)
0.
64

5
0.
09

6
(0
.0
68

)

Be
ta

Er
ro
r
Pe

rc
en
ta
ge

-7
.2
03

(3
3.
84

9)
6.
10
8

(6
.8
79

)
0.
36

0.
08

9
(0
.3
71

)

A
ce

Be
ta

Er
ro
r
Pe

rc
en
ta
ge

-0
.1
32

(0
.6
29

)
0.
05
1

(0
.1
37

)
0.
73

3
0.
02

3
(0
.2
09

)

K
in
g
Be

ta
Er

ro
r
Pe

rc
en
ta
ge

-3
.6
82

(5
.9
18

)
0.
90
7

(1
.3
23

)
0.
47

7
0.
02

8
(0
.2
30

)

Pi
le

M
ov
e
Pe

rc
en
ta
ge

71
.7
59

(2
4.
05

2)
13
.3
33

(4
.8
8)

0.
00

6
**

0.
09

7
(0
.5
13

)

**
p
<
.0
1;

*
p
<
.0
5



110 DISSECTING DIGITAL CARD GAMES TO YIELD DIGITAL BIOMARKERS
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4.7 Discussion

Mild Cognitive Impairment is a neurological disorder that is linked to an
increased risk of developing dementia. As such, early detection of cognitive
deterioration is essential for timely diagnosis and for allowing tailored care and
treatment. Collecting digital biomarkers via COTS games may help by providing
cognitive information through behavior traces of activities already integrated
into the daily life of older adults. In this study, we investigated in particular
whether Klondike Solitaire can yield digital biomarkers. In the paragraphs
below, we discuss our findings and reflect on the different potential digital
biomarkers, their relation to cognitive functions, and the ethical implications of
their use for cognitive assessment purposes.

4.7.1 Dissecting Digital Biomarkers

Out of 23 candidate digital biomarkers, we found 12 to differ significantly
between older adults with MCI and a healthy control group. This supports the
use of digital card games for monitoring cognitive performance and possibly
detecting differences in cognitive performance caused by MCI.

While overall findings are promising, not all candidate biomarkers performed
equally. We saw for time-based digital biomarkers that biomarkers related to
coming up with a move, Think Time Average and Standard Deviation, were
significantly affected by MCI. In contrast, biomarkers related to the actual
physical movement of cards, Move Time Average and Standard Deviation,
were not significantly affected. Total Time Average (p-value = 0.021), which
contains Move Time as well as Think Time, was significantly affected yet was
less significant than Think Time Average (p-value = 0.006). These results
indicate that segmenting in-game actions can be beneficial as they can more
accurately isolate cognitive functions such as praxis and cognitive planning.

For performance-based digital biomarkers, in contrast with expectations, none
of the biomarkers related to beta errors were proven to differ significantly. Upon
rewatching gameplay, it became clear that there were two different types of
beta errors, strategic versus unintentional. Unfortunately, due to the current
configuration of the application, it was impossible to discriminate between both
types. This is further discussed in the Limitations section. On the other hand,
Pile Move Percentage was proven to differ significantly. This may indicate that
older adults with MCI may not recognize the same cards being returned as fast
as their healthy counterparts.
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Results equally indicated that participants with MCI made more mistakes,
as both error-based digital biomarkers (i.e., successful move percentage and
erroneous move percentage) were significant. In contrast, none of the auxiliary-
based digital biomarkers showed to differ significantly. Upon inspecting the data,
it was noted that none of both groups consistently used these functionalities,
which may have contributed to the lack of significance.

Finally, four out of five digital biomarkers in the result-based category were
significant, three of them with p<0.01 (i.e., Score, Solved, Cards Moved Standard
Deviation). The outcome of these measures is the result of a series of consequent
moves, each of them being potentially crucial to complete the game. For example,
one lapse in attention or executive functioning can cause important moves to
be overlooked, in turn making the game unsolvable. While overall Gametime
was not significant, this can be explained due to the fact that time spent in
the game on itself does not indicate lesser performance. Time-based digital
biomarkers, which are equally measures of time but contextualized with the
amounts of moves made, show more significant results (i.e., Think Time Average,
Think Time Standard Deviation, Total Time Average, Total Time Standard
Deviation), stressing the importance of contextualization.

In sum, our findings are in accordance with the earlier work of Jimison et al.
[145] where FreeCell, another Solitaire variant. Using card gameplay, we can
discern older adults with MCI from a healthy control group. Moreover, the
results gathered from this study are in line with previous research by Bankiqued
et al. [96] and Ángeles Quiroga et al. [277]. Bankiqued et al. [96] found
that casual games that tap working memory and reasoning can be robustly
related to performance on working memory and fluid intelligence. Similar
research on commercial video games by Ángeles Quiroga et al. [277] found high
relationships between video games and general intelligence test performance.
Our findings confirm these findings at a finer granularity and show that when
scrutinizing player actions time-based, error-based, and result-based biomarkers
yield promise in particular.

4.7.2 Future Work

In this study, participants with MCI were diagnosed with multiple-domain
amnestic MCI, based on Petersen’s diagnostic criteria [33]. As MCI is a
multidimensional clinical entity, it would be interesting to explore whether
Klondike Solitaire is suitable for monitoring the cognitive status of participants
with non-amnestic MCI as well. The focus on executive functioning can be
useful for both subtypes, as it has been shown that both MCI subtypes have
a similar decrease in executive functioning [278]. Although we acknowledge



DISCUSSION 113

that the evaluation of other cognitive functions such as anterograde memory,
retrograde memory, orientation, and language is paramount to get a complete
overview of the patient’s cognitive profile, these cognitive functions were not
identified by the experts and were thus not included in our analysis.

4.7.3 Reflections on the Use of COTS games to assess
Cognitive Performance

COTS games also have their limitations. First, neuropsychological assessments
are typically designed to assess a broad yet targeted spectrum of cognitive
functions. Moreover, different tests are devised to measure one cognitive
function in particular. COTS games, and more particularly digital card games,
were found more limited in the cognitive functions they can specifically assess.
When using COTS games, it may be hard to separate the evaluations of specific
cognitive functions. In this study, experts judged every single player action to
be related to at least two cognitive functions.

Second, using COTS games as an instrument to measure cognitive performance
and possibly flag MCI necessitates ethical reflection. We envisioned the use
of COTS games to be used only in accordance with the patient, with the
positive aspiration that this could aid in the longitudinal monitoring of cognitive
deterioration, more accurately measuring cognitive performance and variance.
This project grew out of an ambition to escape the limitations of serious games
and providing meaningful play to older adults. Yet, we have to acknowledge
that we may have transformed an activity previously considered enjoyable,
yet innocent, into an instrumental activity that may even trigger a sense of
health surveillance [279]. Observational notes taken during this study did not
reveal any verbal remarks of stress from the participants diagnosed with MCI.
However, such remarks were made by several of the healthy participants, as
some felt pressure to outperform participants living with MCI. Further research
is needed to understand how the instrumentalization of COTS games impacts
the player experience of patients.

Third, it has to be noted that deriving digital biomarkers from digital games
may not be relevant for all older adults. Not everyone is an avid gamer, and
even those who are may have preferences for different game genres. In addition,
these preferences might change over time [100]. While digital card games,
such as Klondike Solitaire, are in general a popular pastime for the population
susceptible to MCI [85], [86], [105], [113], [114], they might not be for coming
generations. Therefore, it is important to identify other accessible games suitable
for cognitive monitoring with a broad appeal.
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Finally, the interaction between healthcare professional and patient, oftentimes
found stimulating and motivating in and of itself, is crucial for full assessment.
Hence, we argue that COTS games for screening and monitoring of cognitive
impairment should not be used as a replacement of current neuropsychological
examination but rather as a source of additional information.

4.7.4 Limitations

Fine-tuning Beta Errors

In contrast with expectations, Beta Error related digital biomarkers proved to be
insignificant. Upon inspecting games of both groups, it became clear that there
are two types of beta errors: Build Stack Beta Errors and Suit Stack Beta Errors.
The former represent missed moves between build stacks. These errors were
rarely on purpose and occurred less in the healthy participants’ group, based on
observation. In contrast, the latter represent missed moves between build stacks
and suit stacks. We observed that this latter category is utilized strategically
to prevent the inability of placing future cards. Observations suggest these
occurred more often in the healthy participants’ group. Unfortunately, due to
the current configuration of the application, it was impossible to discriminate
between these two types of Beta errors. Hence, this points to the importance of
further contextualization and refinement of measurement of Beta errors, and
biomarkers in general which should be addressed in future work.

Limited sample size

An a priori power analysis [280] estimated the adequate sample size to lie
between 32 to 88 participants (assuming comparable effect sizes as cognitive
screening instruments to detect MCI [281]). Due to strict inclusion criteria, only
46 participants were eligible. While this strict protocol kept data quality in
mind, the sample size may have impacted the effects estimated in this study. It
could be that our study is underpowered, leading to some digital biomarkers to
be wrongfully found insignificant. Future studies should therefore still critically
inspect the different digital biomarkers and results obtained.

Additionally, because of the average age difference between both groups, we
chose a GLMM for our statistical analysis, as it can factor in confounding effects.
A side exploration included trained machine learning models to predict age
instead of MCI on the same dataset. These models were found less performant
than the ones modeling MCI, underscoring that the effect of MCI is greater
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than the effect age in our dataset. Nevertheless, it is a limitation we have to
acknowledge and take into account while interpreting the results.

4.8 Conclusion

This study gives insight into the cognitive functions addressed while playing
digital card games, and assesses its potential of screening for MCI. To this
end, eleven experts in neuropsychology or geriatrics mapped associations of
player actions in Klondike Solitaire and cognitive functions. Upon this exercise,
that showed experts agreed player actions were related to cognitive functions
a, 23 potential digital biomarkers of cognitive performance were crafted. A
Generalized Linear Mixed Effects analysis, taking effects of age, tablet experience,
and Solitaire experience into account, compared digital biomarker performance
between an MCI group and a healthy control group. We found a significant and
sizeable effect for 12 of 23 digital biomarkers, despite strict inclusion criteria
and natural variations in human cognition. These exploratory results support
the notion of detecting Mild Cognitive Impairment through Klondike Solitaire.
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5.1 Introduction

Mild Cognitive Impairment (MCI) is a condition where one or more cognitive
domains are slightly impaired, yet instrumental activities of daily living are
still intact [3], [43]. People with MCI have a higher chance of progressing to a
form of dementia, moreover, it can also signal other neurologic or psychiatric
diseases such as vascular disease or depression [3], [43], [56]. Therefore, timely
detection of patients with MCI is necessary to provide support and devise a
(non)pharmaceutical management approach [3], [101]. While clinically valid,
modern cognitive assessment is limited by the mode of administration, often
pen, paper, and stopwatch [48]. These modes of administration require
continuous attention from a trained administrator, limiting the type and
amount of data points captured, and make measurements vulnerable to
administrator bias and white coat effect [47], [282]. As a consequence, this
lack of accurate high-resolution data can make it difficult to make informed
inferences of neuropsychological processes [48]. Cognitive assessment through
digital biomarkers of cognitive performance could be an addition to the current
cognitive toolset by contributing to a more complete cognitive profile [48]. Digital
biomarkers [18], [61] are user-generated physiological and behavioral measures,
captured through connected digital devices, which can provide high-resolution,
objective, and quantifiable cognitive data [46].

For MCI, the systems measuring digital biomarkers of cognitive performance
can be categorized into four groups [46]: systems using dedicated or passive
sensors, systems with wearable sensors, non-dedicated technological solutions
(e.g. software that captures text input), and dedicated or purposive technologies
such as games. Games are in an unique position to yield digital biomarkers
as they are autotelic in nature, meaning they are played for the enjoyment
they offer, without the need or request from a third person. Hence, they
are intrinsically motivating and do not necessitate an administrator, thereby
avoiding white coat effect and related biases. Moreover, they can provide
different challenges with every playthrough while leaving the fundamental game
rules intact [48]. This possibility of supplying novel challenges contrasts with
the static property of classical cognitive testing, which makes administering
them over a short period of time more prone to learning effects [48].

Whereas prior research in games and cognition focused primarily on games
specifically made for the purpose to measure cognition (i.e. serious games),
current research is investigating commercial off-the-shelf (COTS) video games
as a medium for digital biomarkers of cognitive performance [100]. While
both serious and COTS games may provide more interactive, immersive, and
engaging experiences, when compared to traditional cognitive screening [82]–[84],
COTS games have the important advantage of already being woven into the
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daily life of older adults. Previous research indicates that serious games for
training and measuring cognition still lack engagement, and suffer from attrition
in longitudinal studies [82], [96], [99]. As such, this study explores whether
Klondike Solitaire, an existing popular Solitaire card variant [114], can be used
to detect differences in cognitive performance amongst healthy older adults and
those with MCI.

To this end, Klondike Solitaire data from 23 healthy older adults and 23
older adults with MCI were captured. Derived digital biomarkers of cognitive
performance were used to train machine learning models to classify individuals
belonging to either group. Successful classification of MCI through machine
learning supports the efficacy of COTS games to detect differences in cognitive
performance on an individual level.

5.2 Materials and Methods

5.2.1 Participants

Participants with MCI were recruited from two leading memory clinics
in Belgium and were clinically diagnosed with multiple domain amnestic
MCI according to Petersen’s diagnostic criteria [283]. Healthy participants
were recruited using a snowball sample starting from multiple senior citizen
organizations and were screened using two commonly used cognitive screening
tests and a structured interview: the Montreal Cognitive Assessment (MoCA),
the Mini-Mental State examination (MMSE), and the Clinical Dementia Rating
(CDR) scale [41], [246], [284]. The inclusion and exclusion criteria of both
groups can be found in Table 5.1. Out of 64 enrolled participants, 23 healthy
older adults and 23 older adults with MCI fulfilled all inclusion criteria. These
46 participants all played the same three games, resulting in a total of 138
games captured.

5.2.2 Study Overview

This study is part of an overarching study that assesses cognitive performance
through meaningful play (Clinical Trial ID NCT02971124). Every observation
was conducted in the home of the participant between 9am and 5pm to ensure
a familiar and distraction-free environment. All sessions were completed on a
Lenovo Tab 3 10 Business tablet running Android 6.0. All Klondike Solitaire
games were played on a custom-build Solitaire application which captured
several game metrics, originally created by Bielefeld [270] under the LGPL 3
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Table 5.1: Study inclusion and exclusion criteria.
Inclusion Criteria
Minimum 65 years old
Lives independently or semi-independently at home, service flat, or care home.
Prior Solitaire Experience
Fluent in written and verbal Dutch
No visual or motoric deficits
Stable medical condition

Exclusion Criteria Healthy Group
MMSE<27, MoCA<26, or CDR>0

Exclusion Criteria MCIGroup
Non-amnestic or single-domain MCI
MMSE<23

license. In this application, cards requested from the pile came in three, with
unlimited passes through the pile. Points could be earned or lost by making the
following moves: cards put from build to suit stack added 60 points, cards put
from pile to suit stack added 45 points, revealing cards on the build stack added
25 points, retrieving cards from suit to build stack subtracted 75 points, and
going through the whole pile subtracted 200 points. Before playing Solitaire,
a standardized five-minute introduction of the tablet and game was given. In
addition, a practice game was played where questions to the researcher were
allowed. Afterwards, three rounds of Klondike Solitaire, each with a different
shuffle were played in succession. To prevent unfair shuffles (dis)advantages,
deck shuffles were identical for all participants for each round. These three
shuffles were chosen beforehand by the researchers so that they were solvable
and varied in difficulty. While playing these three rounds, no questions were
allowed, and gameplay continued until the rounds were finished or until the
participant indicated that they deemed no further moves were possible.

5.2.3 Data Analysis

While playing Klondike Solitaire, general game data such as the total time, score,
and outcome were captured. In addition, for every single move, the timestamp,
touch coordinates, origin card information, destination card information, and
the possibility of other moves on the board was logged. This game data was
used to calculate the digital biomarkers of cognitive performance (see Table
5.2). These digital biomarkers can be seen as basic game metrics enriched with
game information. This contextualization is important to aid the interpretation
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of the cognitive information from the game. For example: a larger number of
pile moves made can be interpreted as progression in the game, but can equally
be interpreted as the player not realizing that they are stuck. By dividing
the amount of pile moves by the number of total moves, a more informative
candidate digital biomarker can be obtained. This contextualization resulted in
61 candidate digital biomarkers of Klondike Solitaire (Table 5.2) to be classified
in one of five categories: result-based, which contains biomarkers which are
related to performance at the end of a game; performance-based, which contains
biomarkers which are related to performance during the game; time-based,
which contains biomarkers related to time; execution-based, which contain
biomarkers related to physical execution of moves; and auxiliary-based, which
contain biomarkers related to help features.

For model training, a machine learning procedure was adapted from Sebastian
Raschka [285] (Figure 5.1), using Scikit-learn [227] as the main machine learning
library. All data were split using a randomized stratified sampling method (102
games from 34 participants in the training set, 36 games from 12 participants in
the test set). To prevent data leakage due to identity confounding [286], rounds
were split subject-wise instead of record-wise (i.e. all rounds of a participant
were either all in the test set or the training set). Heavily correlated features
(p>0.9) were removed to prevent multicollinearity [287]. In total, 26 features
remained after selection which are indicated in bold in Table 5.2. Afterwards,
features were scaled using a Standard Scaler. As each algorithm has its inherent
biases with none being superior over the rest, nineteen classification models
were trained, ranging from linear models like Logistic Regression up to non-
linear models like Gaussian Naïve Bayes [285]. The selection of our models was
based on their maturity, popularity, and support available in the sci-kit learn
machine learning library. To evaluate them during the training phase, 5-fold
cross-validated F1 scores were compared. The hyperparameters of the three
most performant models were further optimized. Ultimately, these three best
performing models were evaluated on the test dataset.



122 DETECTING MILD COGNITIVE IMPAIRMENT USING GAME-BASED DIGITAL BIOMARKERS

Table 5.2: Potential Digital Biomarkers of Cognitive Performance in Klondike
Solitaire, divided into five categories. Remaining features, after multicollinearity
and zero value checks, used to train the models, are in bold and indicated with
an asterix.

Digital
Biomarker

Description Aggregation Data
Type

Result-Based
Score Final score of a game. Value* Integer

[-∞,+∞]
Solved Whether the game was

completed or not.
Value* Boolean

Gametime Total time spent playing a
game, expressed in ms.

Value* Integer
[0,+ ∞]

Total Moves Total amount of moves
made during the game.

Sum* Integer
[0,+ ∞]

Performance-Based
Successful Move Amount of successful

moves.
Percentage* Double

[0.00%-
100.00%]

Erroneous Move Amount of erroneous
moves.

Percentage* Double
[0.00%-
100.00%]

Rank Error Amount of rank errors. Percentage* Double
[0.00%-
100.00%]

Suit Error Amount of suit errors. Percentage* Double
[0.00%-
100.00%]

King Error Amount of kings mis-
placed

Percentage Double
[0.00%-
100.00%]

Ace Error Amount of aces misplaced Percentage Double
[0.00%-
100.00%]

Pile Move Amount of pile moves. Percentage* Double
[0.00%-
100.00%]

Cards Moved Amount of cards selected
for each move.

Average*,
Median,
Standard
Deviation

Double
[0.00,+
∞]
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Digital
Biomarker

Description Aggregation Data
Type

Beta Error Amount of pile moves with
moves remaining on the
board.

Percentage* Double
[0.00%-
100.00%]

King Beta Error Amount of missed oppor-
tunities to place a king on
an empty spot.

Percentage Double
[0.00%-
100.00%]

Ace Beta Error Amount of missed oppor-
tunities to place a king on
the suit stacks.

Percentage Double
[0.00%-
100.00%]

Final Beta Error Whether there was a
missed move when quit-
ting a game.

Value* Boolean

Time-based
Think Time Time spent thinking of a

move, expressed in ms.
Average*,
Standard
Deviation*,
Min*, Max,
Median

Integer
[0,+ ∞]

Think Time Suc-
cessful

Time spent thinking of a
successful move, expressed
in ms.

Average,
Median,
Standard
Deviation,
Min, Max

Integer
[0,+ ∞]

Think Time Erro-
neous

Time spent thinking of an
erroneous move, expressed
in ms.

Average,
Median,
Standard
Deviation,
Min, Max

Integer
[0,+ ∞]

Move Time Time spent moving
card(s), expressed in ms.

Average*,
Standard
Deviation*,
Min*, Max,
Median

Integer
[0,+ ∞]

Move Time Suc-
cessful

Time spent moving card(s)
for a successful move,
expressed in ms.

Average,
Median,
Standard
Deviation,
Min, Max

Integer
[0,+ ∞]
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Digital
Biomarker

Description Aggregation Data
Type

Move Time Erro-
neous

Time spent moving card(s)
for an erroneous move,
expressed in ms.

Average,
Median,
Standard
Deviation,
Min, Max

Integer
[0,+ ∞]

Total Time Total time to make a move,
expressed in ms.

Average*,
Standard
Deviation*,
Min*, Max,
Median

Integer
[0,+ ∞]

Execution-based
Accuracy Accurateness of selecting a

card, defined by how close
a card was touched to the
center.

Average*,
Standard
Deviation*,
Min*, Max*,
Median

Double
[0.00%-
100.00%]

Taps Actuations on non-game
or UI elements.

Sum* Integer
[0,+ ∞]

Auxiliary-based
Undo Move Amount of undo’s re-

quested.
Percentage Double

[0.00%-
100.00%]

Hint Move Amount of hints requested Percentage Double
[0.00%-
100.00%]

* Indicates remaining features after multicollinearity and zero value checks
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Figure 5.1: Machine Learning process based on the work of Raschka [285].
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5.3 Results

5.3.1 Study Population

In total, 46 participants (23 MCI and 23 Healthy) were enrolled, resulting
in 138 rounds of Klondike Solitaire captured. Demographic and basic
neuropsychological data of both groups can be found in Table 5.3.

Table 5.3: Demographic and neuropsychological data for both groups.
DEMOGRAPHIC INFORMATION

Healthy (n=23) MCI (n=23)
Age 70 (SD=5.4) 80 (SD=5.2)
Education1 22%/30%/48% 17%/57%/26%
Sex (F/M/X) 47%/53%/0% 57%/43%/0%
Tablet Proficiency2 52%/9%/0%/9%/30% 13%/9%/9%/4%/65%
Klondike
Proficiency2

13%/26%/13%/47%/0% 30%/35%/9%/26%/0%

MMSE Score 29.61 (SD=0.65) 26.17 (SD=1.75)
MoCA Score 28.09 (SD=1.28) NA
CDR Score 0 (SD=0) NA
1Participants were categorized into three education groups according
to the 1997 International Standard Classification of Education [288]:
a. ISCED 1/2 b. ISCED 3/4 c. ISCED 5/6.
2Participants were categorized into five proficiency groups based on
frequency of use: a. Daily b. Weekly c. Monthly d. Yearly or less e.
Never

5.3.2 Model Performance

The average results of all selected digital biomarkers of cognitive performance
across the three rounds for both groups can be found in Table 5.4. The 5-fold
cross-validated F1 validation score of the nineteen initial base models was on
average 0.738 1. The validation performance metrics of the three best finetuned
models obtained an F1 score of 0.812 (SD=0.058) for the Gradient Boosting
classifier, 0.797 (SD=0.074) for the Nu-Support Vector classifier, and 0.792
(SD=0.102) for the Extra Trees classifier. Test performance metrics of these
models for the 36 rounds in the test set achieved an F1 score of 0.821 with an
AUC of 0.892 for the Gradient Boosting classifier, an F1 Score of 0.824 with
an AUC of 0.901 for the Nu-Support Vector classifier, and an F1 score of 0.811

1An overview of all performance metrics of each model can be found in appendix A
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with an AUC of 0.877 for the Extra Trees classifier. Confusion matrixes and
ROC curves for these three models can be found in Figure 5.2.

Figure 5.2: Test performance metrics on a per game basis.
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Table 5.4: Average performance scores of both groups across all rounds.
Candidate Biomarker Healthy MCI
Result-Based
Score 565.22 (SD=896.92) -56.3 (SD=1032.16)
Solved 28 out of 69 games

solved
10 out of 69 games
solved

Gametime 266107.33
(SD=100546.06)

422283.35
(SD=243018.32)

Total Moves 68.49 (SD=17.45) 72.59 (SD=28.54)

Performance-Based
Succesful Move Percent-
age

95.37 (SD=4.28) 87.45 (SD=15.86)

Erroneous Move Percent-
age

3.65 (SD=3.62) 6.62 (SD=6.7)

Rank Error Percentage 1.85 (SD=2.34) 4.51 (SD=6.18)
Suit Error Percentage 2.33 (SD=2.74) 3.59 (SD=4.83)
Pile Move Percentage 47.36 (SD=16.93) 56.66 (SD=16.34)
Average Cards Moved 1.29 (SD=0.21) 1.19 (SD=0.2)
Beta Error Percentage 45.25 (SD=27.83) 57.37 (SD=29.98)
Final Beta Error 0.13 (SD=0.34) 0.33 (SD=0.47)

Time-based
Average Think Time 2765.71 (SD=734.83) 4514.78 (SD=1749.75)
Standard Deviation
Think Time

1999.72 (SD=812.16) 3544.32 (SD=2181.62)

Minimum Think Time 957.04 (SD=223.42) 1289.55 (SD=573.65)
Average Move Time 722.16 (SD=169.82) 1050.45 (SD=426.31)
Standard Deviation Move
Time

440.04 (SD=383.42) 943.64 (SD=872.37)

Minimum Move Time 376.35 (SD=97.09) 458.03 (SD=140.38)
Average Total Time 3767.28 (SD=992.82) 5666.61 (SD=2221.33)
Standard Deviation Total
Time

2560.54 (SD=1123.73) 4191.06 (SD=2576.13)

Minimum Total Time 741.12 (SD=234.66) 842.41 (SD=414.25)

Execution-based
Average Accuracy 79.43 (SD=4.73) 74.51 (SD=4.68)
Standard Deviation Accu-
racy

9.74 (SD=2.67) 10.68 (SD=2.63)

Minimum Accuracy 51.88 (SD=18.47) 49.06 (SD=13.72)
Maximum Accuracy 96.07 (SD=2.33) 92.58 (SD=4.48)
Taps 0.77 (SD=1.41) 6.61 (SD=12.84)
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5.4 Discussion

Digital biomarkers of cognitive performance, embedded into casual gameplay,
can be used for cognitive monitoring. By evaluating the efficacy of these
candidate digital biomarkers of cognitive performance to discriminate healthy
older adults from older adults with MCI, new research opportunities may be
opened for monitoring the cognitive trajectories of older adults.

In total, 136 rounds were collected from 46 participants (23 healthy and 23
persons diagnosed with MCI). Derived digital biomarkers were used to train 19
diverse machine learning models which were optimized for the F1 score (the
harmonic mean of precision and recall). The choice for optimizing for the F1
score is twofold. First, the possible damage of False Negatives, as well as False
Positives, is significant. False negatives, in this study older adults with MCIbeing
classified as healthy, could postpone diagnosis, leading to longer undetected
disease progression. False Positives, in this study healthy older adults being
classified as MCI, could have an equally detrimental impact. Misdiagnosis of
cognitive impairment could further spiral the depression of the healthy older
adult. Second, F1 score is a robust parameter for unbalanced datasets. Should
these studies be expanded to real-life settings where MCIand populations are not
equal, this scoring parameter will likely still be of relevance to other researchers.

After hyperparameter finetuning, the 5-fold cross-validated F1 training score
on the validation set was above 0.792 for each of the three selected models.
When evaluated on the test set, each of these models had an F1 score above
0.811 and an AUC above 0.877. The ROC curves of each model also reveal
promising decision thresholds to maximize Sensitivity (True Positive Rate) and
Specificity (1-False Positive Rate). It can also be noted that the three selected
models come from different machine learning model techniques: a bagged
decision tree ensemble (Extra Trees), a boosted decision tree ensemble (Gradient
Boosting), and a Support Vector model (Nu-Support Vector) [227]. These high
performances on validation and test, combined with the variety of techniques
used, indicate that the digital biomarkers contain cognitive information and
that successful classification is not hinging on the intricacies of a certain model.
In contrast, these robust results indicate that digital biomarkers of cognitive
performance, measured while playing Klondike Solitaire, are impacted by MCI.
When combined, these digital biomarkers may even be used to train machine
learning models to discern older adults with MCIfrom their healthy counterparts,
lending support for use for detecting cognitive decline.

The performance metrics of our models appear to be in line to those of current
day neuropsychological screening tests. Two of the most common screening tests
for discriminating MCI from healthy are the MoCA [41] and the MMSE[284]. In



130 DETECTING MILD COGNITIVE IMPAIRMENT USING GAME-BASED DIGITAL BIOMARKERS

a systematic review by Pinto et al. [244], a mean AUC of 0.883 was found for the
MoCA and a mean AUC of 0.780 for the MMSE. While this study is not meant as
a validation study of Klondike Solitaire, our results indicate possible comparative
psychometric properties. However, the performance metrics appear to be below
the findings of prior studies using serious games. Valladares-Rodríguez et al.
[289] investigated the use of machine learning models to discriminate amongst
healthy older adults, older adults with MCI, and older adults with Alzheimer’s
Disease. Their serious game set Panoramix consists of seven games based on
seven pre-existing neuropsychological tests such as the California Verbal Test.
Their Random Forest classifier obtained a global training accuracy of 1.00, a
global F1-score of 0.99, a Sensitivity score of 1.00 for MCI, and a Specificity
score of 0.7 for MCI. Direct comparison with this study is however problematic
due to different inclusion criteria, absence of a hold-out test set, and ternary
classification.

Although this study focused on discerning healthy older adults from older
adults with MCI using a single point in time measurement, these findings
may well have a bearing on their use of frequent cognitive monitoring. As
pointed out by Piau et al. [46], perhaps the biggest shortcoming of today’s
neuropsychological examination is that it is taken at discrete points in time
at large intervals. This makes results vulnerable to temporary alterations in
motivation or cognition (e.g. stress or tiredness). As argued by Pavel et al. [48],
general principles of measurement may be extended to psychological processes.
By increasing the amount of measurements, measurement uncertainty caused
by imperfections of the tool can be reduced and natural variations in cognition
caused by characteristics of the phenomenon can be detected. The spatial and
temporal richness of data derived from longitudinal gameplay may allow for
a more detailed cognitive profile and could signal events where cognition was
altered (e.g. impact of changes in medication regimen or traumas) [48]. In
addition, personal cognitive baselines can be created which allow the individual
to be compared with themselves as opposed to normative data [61]. These
cognitive baselines could be used to detect subtle cognitive fluctuations, an
early indicator of cognitive change [46], [48], [290].

Finally, there are limitations to this study that should be addressed in future
work. In particular, the small sample size refrains us from drawing any absolute
conclusions. This might lead to potential bias in the test set, explain the
performance discrepancy between the test and validation set. In addition,
discrepancies in age, tablet experience, and Klondike Solitaire experience
between both groups may equally confound results. Confirmatory studies
with larger and more balanced sample sizes are needed to further investigate
the psychometric properties of using casual card games for screening.
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5.5 Conclusion

This study set out to investigate the suitability of the card game Klondike
Solitaire to detect Mild Cognitive Impairment through machine learning. The
major finding of this study is that casual card games, not built for the
purpose of measuring cognition, can be used to capture digital biomarkers
of cognitive performance which are sensitive to cognitive impairment caused by
MCI. Hence, the popularity of casual games amongst today’s older generations
may prove useful for supplying cognitive information between consultations.
Notwithstanding the relatively small sample size, this work offers valuable
insights into the use of casual games to detect cognitive impairments.
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Chapter 6

Discussion

In this dissertations, we investigated the possibilities of assessing cognitive
performance in older populations through meaningful play, in particular via
digital card games. Therefore, a series of studies were conducted which
assessed either the impact of cognitive aging through FreeCell or the impact
of Mild Cognitive Impairment through Klondike Solitaire. This chapter first
recapitulates the research questions posed in the introduction and reflects on
the scientific contributions made during this doctoral study. Next, we discuss
directions for future work and how COTS games can further evolve to tools
used for frequent longitudinal monitoring. Finally, we end this chapter with
a general evaluation of the outcomes, a discussion of the limitations, and a
reflection on the ethical implications of using commercial off-the-shelf video
games for cognitive assessment.

6.1 Revisiting Research Questions

Objective: To assess cognitive performance in elderly life
via meaningful play

RQ 1. How can game data be captured from commercial of-the-shelf digital
card games?

In this doctoral thesis, we have shown that card game data can be captured
from digital card games. One of the biggest technical hurdles in working with

134
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COTS games is extracting cognitive information from said games, as there is
no access to the source code nor to interaction logs, complicating the process
of creating insightful digital biomarkers. To this end, we built an Android
application of Klondike Solitaire. This allowed us to capture raw data used for
analysis in chapters 4 and 5.

However, one could argue that such a custom built variant of Klondike Solitaire,
while providing meaningful play, still does not represent a truly commercial
off-the-shelve game. Therefore, we explored capturing data from the commercial
Microsoft Solitaire Collection [291], currently shipped with Windows 10. A novel
method of extracting game data from COTS games was explored by means of
computer vision in collaboration with the EAVISE lab of KU Leuven. Chapter
2 details the development of this image processing toolkit for card games. The
toolkit, a multithreaded C++ desktop application built with OpenCV, captures
images from the Microsoft 10 Solitaire Collection, analyzes them, and calculates
digital biomarkers of cognitive performance. In total, two master theses [292],
[293] have been building on and improving this toolkit. With the current toolkit,
it is possible to extract potential digital biomarkers from the whole Microsoft 10
Solitaire Collection. Results showed that it was possible to accurately analyze
gameplay in real-time without interference and with minimal stress on the
computer. On the other hand, this study also showed the caveats for this
approach. We found it was necessary to turn down in-game animations, which
interfered with analyzing the images. Additionally, it required manually setting
the correct image threshold values. In the last iteration of this toolkit [294], we
explored integrating deep learning models in the toolkit which may alleviate
some of the current limitations.

To the best of the author’s knowledge, this study presents the first attempt
to extract digital biomarkers from card game play through computer vision.
Therefore, the study can function as a proof-of-concept, paving the way forward
for using COTS games as a medium to collect digital biomarkers. By detailing
the methods and releasing the source code, we hope to inspire future research to
apply this process to other games of interest.

RQ 2. How can insights from game design and cognitive psychology be
combined to transform game data into potential digital biomarkers of cognitive
performance?

This research question tackles one of the biggest methodological challenges of this
dissertation. Multidisciplinary in its nature, this project hinges on a successful
collaboration between engineering and medical sciences. To bridge this gap, we
conducted many observations, guided interviews, and casual conversations with
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physicians and patients. Results of this extensive research were first published
in a Work-In-progress in 2017 [125] and are brought together in Chapter 4,
which is currently under review.

In this chapter, we asked eleven experts in the domain of MCI to rank 21 player
actions of Klondike Solitaire to nine cognitive functions. The results showed that
all player actions were at least moderately to strongly correlated to one other
cognitive function. Similarly, each cognitive function had at least one player
action to which it was on average moderately to strongly correlated. These
results were validated using intraclass correlations, which primarily indicated
good to excellent reliability for both player actions and cognitive functions.
Using these insights, the potential digital biomarkers were crafted.

One of the most important findings to emerge from this study is the importance
of contextualisation (i.e., the enrichment of game metrics with additional
information from the game, to be able to function as biomarker). As indicated
by Pavel et al. [48], merely using end-results such as the score or total time
played is often insufficient to get a thorough overview of a cognitive profile.
While motivating and fun-inducing, these end-results are not directly related
to a single cognitive function nor do they take difficulty into account. By
dissecting the game into more granular digital biomarkers, more direct links
to cognitive functions can be made. This effect of contextualization can be
seen in e.g., the analysis of the average total time of a move and of gametime.
While gametime was found to differ insignificantly, the average total move time
differed significantly between both groups.

In sum, the empirical findings in this study support our methodology for
creating digital biomarkers. To fully optimize the use of digital biomarkers,
contextualization is imperative to make accurate inferences of underlying
cognitive processes.

RQ 3. To what extent can differences in cognition due to cognitive aging be
assessed using digital biomarkers of cognitive performance?

To assess whether traces of cognitive aging could be detected via digital card
games, a data acquisition study was set up, gathering potential digital biomarkers
found in FreeCell from three different age groups. Chapter 3 details the machine
learning process used to train models to classify games in one of the three age
groups. Important to note is that none of the participants had ever played
FreeCell before taking part in this study. Each participant was only given a
standardized presentation of the game rules and a practice game. Consequently,
each participant had to rely predominantly on fluid intelligence [295] while
playing the game. Despite the natural high heterogeneity of cognition in humans,
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sufficient global performance metrics were obtained on the test set. However,
individual ROC curves showed discrepancies amongst age groups, with the
model being suboptimal in distinguishing games played by the middle-aged
adults from younger and older counterparts.

While the effects of cognitive aging are more subtle than those of Mild Cognitive
Impairment, these results show that traces of aging can be captured through
game-based digital biomarkers, which can be used to train machine learning
models to distinguish older and younger age groups.

RQ 4. To what extent can differences in cognition due to Mild Cognitive
Impairment be assessed using digital biomarkers of cognitive performance?

To evaluate this research question, potential digital biomarkers from Klondike
Solitaire were gathered from 23 older adults living with MCI and 23 healthy
older adults. Two analyses were conducted on this dataset to evaluate differences
on a group level using statistical models (chapter 4) and on an individual level
using machine learning models (chapter 5). The GLMM analyses showed that 12
out of 23 digital biomarkers differed significantly across groups while controlling
for factors such as Klondike Solitaire experience, tablet experience, and age.
In addition, the machine learning process followed in chapter 5 showed that
multiple models coming from different underlying algorithms showed comparable
psychometric properties as common cognitive screening tests [244].

Combined, these two studies show that digital biomarker performance differed
both at the group level, through statistical analysis, and at the individual level,
through machine learning analysis. This lend support to the use of COTS games
for discriminating older adults with MCI from healthy older adults, vouching
for further research and validation studies.

6.2 Overall Scientific Contribution

The overall scientific contribution of this dissertation can be divided into four
segments, following the research contribution categories for Human-Computer
Interaction of Wobbrock and Kientz [296]. An overview of all the contributions
in this dissertation can be found in figure 6.1.

First, we have one methodological contribution. Developing game-based
digital biomarkers is a process that necessitates successful collaboration between
data science and medical science. As such, a multi-step process was developed
to deconstruct the game into digital biomarkers. By detailing the process
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used to craft the potential digital biomarkers in collaboration with experts,
we hope to inform future researchers on how to craft novel digital biomarkers.
Second, two artifacts were created to capture potential digital biomarkers
of cognitive performance. For Klondike Solitaire, an existing Android app of
Bielefeld [270] was adapted to yield digital biomarkers. Next, for FreeCell, a
tool was developed that could unobtrusively analyze gameplay in real-time
using image processing techniques. To the best knowledge of the authors, this
is one of the first studies exploring this method of extracting game data. By
making the code of both applications publicly available, we hope to inform
future research and inspire them to build other digital biomarker yielding COTS
games. Third, two datasets were gathered over the past four years: a dataset
containing digital biomarkers of FreeCell from three different age groups and a
dataset containing digital biomarkers of Klondike Solitaire from healthy older
adults and older adults living with MCI. By equally making these publicly
available, we hope to incite other researchers to scrutinize these datasets or
use them as benchmarks. Finally, three empirical contributions were made
in the form of quantitative analyses of these datasets. These results provide
support for the hypothesis that COTS games may be used for the assessment
of cognitive performance. By clearly and transparently documenting every step
leading to these analyses, from methodology to artifacts and datasets, we aim
to strengthen the findings of these empirical contributions.

Figure 6.1: Schematic overview of the scientific contributions of this dissertation.
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6.3 Towards Frequent Longitudinal Assessment of
Cognitive Performance

A natural progression of this work is to investigate how the unique benefits
of games can be utilized for frequent (i.e., daily or multiple times per week)
longitudinal cognitive monitoring. The results gathered in this dissertation show
the value of game-based digital biomarkers for single-point-in-time measurements.
However, research stresses the importance of longitudinally monitoring changes
in cognition to timely change diagnosis or adjust disease management approach
[3]. Unfortunately, a critical review on current MCI management poses that
“the optimal timing, choice, and cost-effectiveness of longitudinal cognitive
assessments are unclear”, indicating that the amount of cognitive assessments
is constrained by the inherent cost and time necessitated from patient and
physician [297]. In addition, as pointed out by Pavel et al. [48], classical
neuropsychological tests are not designed to be enjoyed and are fixed in their
format. This makes them suboptimal for frequent longitudinal measurements
due to a lack of adherence and vulnerable to learning effects. COTS games,
with the important sidenote that they are meaningful for the player, could
provide a cost-efficient tool with changing challenges, reducing learning effects,
while keeping the player engaged. To develop frequent longitudinal game-based
cognitive monitoring, additional studies and improvements to existing work will
be necessary.

6.3.1 Improving Current Models

After scrutinizing our existing models, two main opportunities for improvement
become clear. First, a more general improvement is to further explore the
contextualization of the digital biomarkers. In this dissertation, only the
surface of contextualization was scratched by segmenting digital biomarkers
and relating them to other digital biomarkers. From a cognitive perspective,
it can be interesting to also explore patient reactions to game events. For
example, nobody makes an error on purpose. This surprises the player when
the game does not validate their move and throws them off their game. As
such, an interesting biomarker to explore is the time necessary to come up with
a move after an erroneous move. Another example is investigating series of
timings necessary to think of a move. Should these be consequently low and
successful, this might indicate that the player is capable of planning ahead,
devising multiple steps, and remembering them. Second, the way beta errors are
captured in Klondike Solitaire can be refined. These beta errors aimed to detect
missed opportunities of moving cards by scanning the whole board for possible
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moves when the player requested new cards from the pile. Observational notes
made while visiting participants regularly indicated that this was one of the
most notable differences in playstyle between groups. When results showed
that these beta errors did not differ significantly, a selection of games was
manually replayed to see whether these beta errors were correctly captured.
After verifying the accurateness of the data, it stood out that the beta errors
made by both groups were different in nature. The healthy group appeared to
make fewer beta errors revolving around accidentally missing moves between
build stacks. Their beta errors were more intentional in nature and happened
because the user did not want to place cards on the suit stacks in case that would
prevent future cards from the pile to be placed on the build stacks. Therefore,
the hypothesis that beta errors happen more in the MCI group needs to be
refined.

6.3.2 Unlocking the Black Box for Interpretable Machine
Learning

In contrast to humans, machine models do not articulate their rationale. When
new data is presented, it puts out a regression or classification, substantiated by
complex interactions between feature weights. The medical world is, rightly so,
skeptical when adopting complex black-box approaches where data is fed into
the system and a prediction is automagically given. To resolve this distrust,
making models more transparent might aid in building successful data-driven
medical models that are adopted by the medical world.

First, dimensionality reduction techniques that transform features, such as
principal component analysis, should be abstained from. These techniques aim to
reduce the complexity of models by reducing the number of features while keeping
a maximum amount of information by making (non-)linear combinations. While
proven to be effective, these techniques make it more difficult to understand
how decisions are made by the model as they sever the direct link to the original
features. Second, the decision-making process of models needs to be investigated
by calculating feature importance [285]. Feature importance quantifies how
useful a feature is to predict the target variable and gives insight into how
decisions are made in general. Third, in addition to this general understanding
of models, more advanced machine learning interpretability techniques, such
as Shapely Additive exPlanations (SHAP) [298], [299], can be used to make
models more transparent. SHAP can be used to calculate feature importance
in an algorithm-agnostic way, facilitating the process of comparing models built
using different algorithms. Most importantly, SHAP can be used to dissect
the decision-making process of individual predictions, making it possible to
understand the rationale of the model on a case-by-case level. This rationale
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behind a classification can be more valuable to the physician than the outcome
itself as it can provide insight into what behavior led to the classification.
Finally, the information gathered using the techniques above must by effectively
relayed to the physician with utmost care. Using a dashboard application
[300], cognitive information can be visually communicated at a glance. In
this dashboard, special attention should be given to the change in biomarker
performance over time (as monitoring changes in cognition is important for
MCI [3]) and how this affects the certainty of the prediction made by the model.

6.3.3 Detecting Abnormal Change

Frequent longitudinal monitoring opens up new possibilities to quantify cognitive
impairment. Pavel et al. [48] have argued that the general benefits of increasing
measurements equally apply to measuring cognition. The advantage of increasing
measurements is twofold. First, measurement uncertainty caused by random
instrument errors can be reduced. Second, it allows for creating individual
cognitive baselines that contain personal cognitive information. This baseline
can be used to compare the person with itself instead of normative data [61]
and make it possible to detect and evaluate alterations in cognition caused by
changes in medication or trauma. Furthermore, this cognitive baseline allows
for detecting specific temporal characteristics of the disease [48]. For MCI, it
could be interesting to detect cognitive fluctuations [248]. Cognitive fluctuations
are temporary alterations in cognition commonly found in MCI but also in
Lewy Body Dementia or Alzheimer’s Disease [248], [290], [301]. Tracking these
cognitive fluctuations and how they evolve, can help us better understand the
layers of transition leading to dementia. In addition, they can assist in making
changes to diagnosis and disease management by timely signaling changes in
cognition.

Longitudinal cognitive monitoring can build on the techniques of assessing
cognition used in this dissertation. Refining the machine learning models
trained for these studies, it can be interesting to investigate the certainty of the
model’s prediction over time. Most binary classification algorithms output a raw
value, which is transformed into a probability value [285]. Comparing this value
with a learned cut-off value leads to the eventual classification. Monitoring
how these probability values change over time can inform the physician that
the game behavior of the patient is gradually moving further from or towards
typical MCI behavior learned by the model. Combining the trends of these
values with SHAP, corroborating this probability number, can lead to insights
into the person’s cognitive trajectory. A specific implementation, as suggested
by Pavel et al. [48], is to use sliding window techniques to aggregate data to
detect these trends.
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6.3.4 Understanding the Gamer behind the Impairment

To get a better grasp on the person playing the game, research should investigate
the reasons behind playing Klondike Solitaire. Research from Greenberg et al.
[302] and Sherry et al. [303] touch on the different gratifications which games
have to offer, ranging from challenge to diversion. It is intriguing that Klondike
Solitaire, a game with such a low win rate and highly depending on random
shuffles, can be such a popular pastime. In the context of game-based cognitive
monitoring, this natural low win rate can be seen as an advantage. For our
research on the impact of MCI on Klondike Solitaire gameplay, many healthy
older adults and older adults with MCI were visited in their home environment,
each of them playing several rounds of Klondike Solitaire and undergoing a
thorough neuropsychological test battery. Observational notes made during
these visits indicated that both groups showed signs of frustration and distress
during the neuropsychological tests. This emotional effect of neuropsychological
examination has also been studied by Wong et al. [52] and Lai et al. [53].

In contrast, while playing Klondike Solitaire, none of the participants showed
signs of frustration. Verbal utterances made by the participants while playing
indicated that blame often shifted from their own performance to "a bad shuffle
of the deck"1. This random aspect of shuffles in the game can make Klondike
Solitaire more suitable for longitudinally monitoring, especially in populations
with MCI where cognitive impairment will often hinder game performance over
time. Investigating the motivation behind play and the effect of random factors
on frustration might assist in pinpointing other games suitable for longitudinal
cognitive monitoring.

6.3.5 Overcoming Longitudinal Barriers

Finally, to better grasp the implications of frequent longitudinal monitoring,
current and possible future limitations have to be investigated. First, future
researchers should refine existing studies. As indicated in Chapter 4 and 5,
current experiments are underpowered and should be revisited with larger
sample sizes and with the possible improvements described in 6.3.1 to more
accurately assess the impact of MCI to Solitaire gameplay. Confirming these
results and investigating suggested improvements is essential to train more
robust models that can be evaluated in clinical trials. Second, the concerns
on computerized neuropsychological assessment devices voiced by Bauer et al.
[304] equally apply on digital biomarkers derived from COTS games. Before

1During the experiments, none of the participants were informed that each round of
Solitaire was completable. As such, their expectations to actually solve a round were kept
low, reducing frustration when suboptimal play prevented them from completing a round.
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implementing them in practice, these games must follow the same standards
as neuropsychological tests. In addition, the effects of self-administration on
the psychometric properties have to be investigated. Furthermore, the effect
of differing specifications has to be taken into account. For these studies,
all participants did an identical experiment on an identical device. Certain
specifications of digital devices such as the CPU, RAM, or even resolution of the
screen might impact the measurements. Third, as indicated by Bent et al. [62],
digital biomarkers currently have lacking standards and validation methods.
Piau et al. [305] specifically note that while the first large-scale monitoring
initiatives were conducted ten years ago, little to no cross-referencing of digital
biomarkers with biological or imaging biomarkers has been done. To mature
as a research domain, a clear framework must be built that can be used to
critically evaluate and validate potential digital biomarkers. After taking these
concerns into consideration, studies can be set up to investigate the effects of
measuring digital biomarkers longitudinally.

Finally, it has to be recognized that longitudinally measuring cognition may
complicate measurements. For example, practice effects, a common problem
among cognitive tests where participants improve their results when assessed
[306], could arise when users play the game more frequently. Investigating
this effect and taking frequency of play into account when training machine
learning models can mitigate inaccurate interpretations of results. In addition,
while the data from this dissertation was captured in the home environment
of the participant, it was still supervised. Data captured from unsupervised
longitudinal measurements will inadvertently be influenced by interruptions,
causing outliers in the data. Future research should be aware of these effects and
mitigate them by using aggregations that are resilient to outliers (e.g. medians
opposed to minimums and maximums) or by removing outliers. Moreover, it
has to be noted that the motivation or enjoyment to play the game might fleet
over time. While abandonment of the game might indicate that the person is
unable to play the game due to their cognitive impairment, it might equally
indicate a shift in interest. Being aware of these different causes that have the
same outcome might contribute to a more accurate longitudinal assessment.
Critically assessing these complications in future research is crucial to prevent
negative outcomes.

6.4 Ethical reflections

The premise of this dissertation, i.e., using COTS games to assess cognitive
performance, prompted much debate during the course of the doctoral trajectory
with other researchers, reviewers, and participants. This topic necessitates
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ethical reflection and touches on larger ethical discussions such as digital health
[307], [308], patient engagement [309], and the use of machine learning [310],
[311]. In this section we will touch on the most important topics.

The intention of this dissertation is to enable people to play games that
are meaningful to them, in a familiar environment, with the possibility of
unobtrusively assessing cognitive performance. While the technical possibilities
of game-based digital biomarkers are promising, it has to be recognized that
we are transforming an innocent pastime into an instrumental activity that
might trigger feelings of surveillance [279], extending the assessing gaze of
health care providers into the living room of older adults [312] and contributing
to a discourse where such practices are normalized. To ensure capturing a
sufficient amount of data, it may even be tempting to stimulate people to play
a minimum amount of games per week through notifications. This form of
"prescription gaming" may confront the patient with their condition and increase
their burden [312]. As such, it has to be investigated that the assumption of
meaningful play [103] is not violated by adding digital biomarker measurements.
The pressure of performing well, on what was previously a leisure activity,
could lead to the abandonment of the game. Moreover, passive monitoring
in fragile populations, like those of MCI, could inadvertently increase stigma
and lead to unnecessary intensified concern from the family and surroundings.
Especially during the conversion process from MCI to AD, patients might
suffer from decisional impairment, stressing the importance of being meticulous
in the informed consent process [313]. Therefore, to ensure maintaining the
meaningful aspect of the game, research has to investigate the impact of adding
digital biomarkers to COTS games. In addition, utmost care must be taken to
assist the patients in their medical decision-making.

Even with proper consent, care must be taken with how and to whom information
is relayed. Tools that monitor cognitive performance fit in a trend towards the
quantified self and the digitally engaged patient. This current trend in digital
healthcare promotes individuals to self-monitor their daily activities (e.g., sleep,
steps, or mood) and stimulates self-reflection [307]. This trend is driven by the
assumption that the individual is empowered by showing meaningful data-driven
insights tailored to the individual. However, research [312] has shown that
if healthcare data contradicts the patient’s own subjective interpretation of
their medical status, feelings of anxiety, helplessness, and fear could be induced.
Equally for MCI, as indicated by Petersen et al. [3], how information is shared
has to be weighed against the risk of inducing anxiety for a disease that might
not even progress. Therefore, it is advised to solely relay information to the
physician and rely on their judgment to share what is beneficial to the patient.

Moreover, even when information is exclusively shared with the physician,
researchers must be conscientious when developing algorithms. Algorithms
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excel in finding patterns in data yet are not able to discriminate between
correlation and causality [310]. This may cause models that are performant on
test data to fail in real-life scenarios, a phenomenon better known as "shortcut
learning" [311]. Biases can be induced by supplying wrong data to the algorithm,
a famous example being a classifier of pneumonia that learned to detect a
hospital-specific metal token instead of learning to detect pneumonia. This
form of Big Data Analytics (BDA) favors data-driven approaches that are
atheoretical in nature. These techniques revolve around capturing as much data
as possible and using machine learning techniques to gather inductive knowledge
and find correlations in the data. In the long run, BDA approaches equally
need epistemological reflection to be relevant, to have a scientific contribution
they cannot abstain from relating to theory [314]. Therefore, in the context of
leveraging complex interactive technologies such as games for yielding digital
biomarkers, we advocate for the systematic inclusion of domain experts and
patients, using a multi-step process that prioritizes comprehensibility and patient
trust over accuracy and cost-effectiveness.

6.5 Conclusion

Today, assessment of cognitive performance is an agglomeration of cognitive
screening tests, biomarker examinations, and thorough neuropsychological
assessment. Individually, none of these instruments are considered accurate
enough to consistently support a reliable diagnosis, screening, or case-finding.
Game-based digital biomarkers may function as an additional instrument to the
aforementioned neuropsychological assessment ecosystem, empowering clinicians
in case finding and diagnosis while providing patients with a less stressful
alternative. In essence, Solitaire games are a constant stream of stimuli in the
form of cards, prompted by the player, which require comparison with other
stimuli based on two factors (color and rank). Their easy to grasp rules allow for
an unlimited amount of challenges without changing core gameplay. However,
care will need to be given to the use and implementation of such games in
health care systems. Considering the results in this dissertation on the efficacy
of game-based digital biomarkers for single-point-in-time measurements, I look
forward to the prospect of meaningful play, elucidating the current blind spot
between consultations and contributing to a more complete cognitive profile.





Appendix A

Model Performances

This section details the 19 classification models trained for the study described
in chapter 5. In addition to the 19 models, a dummy classifier was trained
to act as a baseline and to ascertain that no data was added or removed
during the preprocessing stage. Models were selected based on their popularity,
performance, and support in the sci-kit learn machine learning library.

All models were trained in four different scenario’s: without preprocessing, with
transformed features, with scaled features, and with transformed and scaled
features. Heavily skewed features were transformed using natural log and square
root transformation depending on their level of skewness. Transforming features
is advised as some machine learning algorithms (e.g., Logistic Regression) assume
normally distributed data. After each scenario, the average 5-fold cross-validated
F1 score of all models without the dummy classifier was calculated.

An overview of all Training set F1 scores for each scenario can be found in
table A. Results showed that the preprocessing scenario without preprocessing
had an average 5-fold cross-validated F1 score of 0.650, which was the lowest
of all scenarios. The scenario with only transforming features had an average
of 0.665, transforming and scaling features had an average of 0.699, and only
scaling features had an average of 0.741. The three most performant models of
the most performant pre-processing scenario were selected for hyperparameter
optimization. The results of these fine-tuned models are described in section
5.3. While the scenario with scaled features had on average the best results,
it can be noted that the Random Forest Classifier had an F1 score of 0.8035
in the transformed and scaled scenario, the Bagging Classifier an F1 score of
0.7909 in the transformed scenario, and the XGBoost Decision Tree Classifier
an F1 score of 0.7702 in the no preprocessing scenario.
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